

√	Final Report
\Box	Re-Issued Repor
	Revised Report
Rej	port Date:
11-	Oct-16 14:38

Laboratory Report

Gulf Oil L.P. 281 Eastern Avenue Chelsea, MA 02150 Attn: Andrew P. Adams

Project: Gulf Terminal - Chelsea, MA

Project #: Gulf Chelsea

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC26445-01	Outfall 003	Surface Water	28-Sep-16 11:30	28-Sep-16 15:30
SC26446-01	Chelsea Creek	Surface Water	28-Sep-16 11:30	28-Sep-16 15:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

June O'Connor Laboratory Director

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 22 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 0.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Report SC26445 and SC26446 together per email 10/11/16. MMB

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 200.8

Duplicates:

1617045-DUP1 Source: SC26446-01

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Lead

The Reporting Limit has been raised to account for matrix interference.

Cadmiun

Lead

Nickel

Samples:

SC26446-01 Chelsea Creek

The Reporting Limit has been raised to account for matrix interference.

Cadmium

Lead

Nickel

SM4500-Cl-G (11)

Spikes:

1616715-MS1 Source: SC26446-01

The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

Total Residual Chlorine

1616715-MSD1 Source: SC26446-01

The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

Total Residual Chlorine

SW846 8260C

Calibration:

1609039

SW846 8260C

Calibration:

1609039

Analyte quantified by quadratic equation type calibration.

Ethylbenzene

m,p-Xylene

Naphthalene

o-Xylene

This affected the following samples:

1616774-BLK1

1616774-BS1

1616774-BSD1

Chelsea Creek

Outfall 003

S607884-ICV1

S608282-CCV1

Samples:

SC26445-01

Outfall 003

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates with three required by program methods.

Dibromofluoromethane

SW846 8270D

Samples:

S608304-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

4-Nitrophenol (-23.8%)

Pentachlorophenol (-42.5%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

2,4-Dinitrophenol (-22.6%)

Benzoic acid (-33.0%)

This affected the following samples:

1616744-BLK1

1616744-BS1

1616744-BSD1

SW846 8270D SIM

Calibration:

1607048

Analyte quantified by quadratic equation type calibration.

Benzo (a) pyrene

SW846 8270D SIM

Calibration:

1607048

This affected the following samples:

1616744-BLK2

1616744-BS2

1616744-BSD2

Chelsea Creek

Outfall 003

S606147-ICV1

S608303-CCV1

S608344-CCV1

Laboratory Control Samples:

1616744 BSD

Naphthalene RPD 21% (20%) is outside individual acceptance criteria.

Samples:

S608303-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Benzo (b) fluoranthene (20.3%)

This affected the following samples:

1616744-BLK2

1616744-BS2

1616744-BSD2

Sample Acceptance Check Form

Client:	Gulf Oil L.P.			
Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC26445			
Sample(s) received on:	9/28/2016			
The following outlines t	he condition of samples for the attached Chain of Custody upon receipt.			
Wana anata da sa		Yes	<u>No</u> ✓	<u>N/A</u>
Were custody se	•			
Were samples re	exceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples co	ooled on ice upon transfer to laboratory representative?		\checkmark	
Were samples re	efrigerated upon transfer to laboratory representative?		\checkmark	
Were sample co	ntainers received intact?	\checkmark		
• •	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
Were samples a	ecompanied by a Chain of Custody document?	\checkmark		
include sample	Custody document include proper, full, and complete documentation, which shall ID, site location, and/or project number, date and time of collection, collector's name, se, sample matrix and any special remarks concerning the sample?	✓		
Did sample con	tainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	eceived within method-specific holding times?	\checkmark		

Sample Acceptance Check Form

Client:	Gulf Oil L.P.			
Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC26446			
Sample(s) received on:	9/28/2016			
The following outlines to	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	No	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			✓
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples co	ooled on ice upon transfer to laboratory representative?		✓	
Were samples re	frigerated upon transfer to laboratory representative?		✓	
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\checkmark		
Were samples ac	ecompanied by a Chain of Custody document?	\checkmark		
include sample l	Custody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	\checkmark		

Summary of Hits

Client ID:

Outfall 003

Lab ID: SC26445-01

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Cadmium	0.00006	J	0.00020	mg/l	EPA 200.8
Chromium	0.00122		0.00050	mg/l	EPA 200.8
Copper	0.0105		0.00050	mg/l	EPA 200.8
Lead	0.00089		0.00025	mg/l	EPA 200.8
Nickel	0.00509		0.00025	mg/l	EPA 200.8
Zinc	0.00843		0.00500	mg/l	EPA 200.8
Salinity	6.20		1.00	ppt (1000)	SM 2520 (01)
Total Solids	7400		50.0	mg/l	SM2540 B (11)
Total Suspended Solids	11.0		0.7	mg/l	SM2540D (11)
Ammonia as N	3.36		0.200	mg/l	SM4500-NH3 C. (11)

1.00

1.0

9.03

2.8

Lab ID: SC26446-01

Total Organic Carbon

Toluene

Client ID:	Chelsea (Creek

mg/l

 $\mu g/l$

SM5310B (00, 11)

SW846 8260C

Parameter	Result	Flag Reporting Limit	Units	Analytical Method
Copper	0.0304	0.00050	mg/l	EPA 200.8
Lead	0.00053	R01, J, 0.00125	mg/l	EPA 200.8
Nickel	0.00831	R01, D 0.00125	mg/l	EPA 200.8
Zinc	0.0197	0.00500	mg/l	EPA 200.8
Salinity	28.1	1.00	ppt (1000)	SM 2520 (01)
Total Solids	34100	500	mg/l	SM2540 B (11)
Total Suspended Solids	11.1	0.5	mg/l	SM2540D (11)
Ammonia as N	0.210	0.200	mg/l	SM4500-NH3 C. (11)
Total Organic Carbon	9.17	1.00	mg/l	SM5310B (00, 11)
Naphthalene	0.108	0.052	$\mu g/l$	SW846 8270D SIM
Phenanthrene	0.061	0.052	$\mu g/l$	SW846 8270D SIM

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Outfall 00 SC26445-					Project # Chelsea		Matrix Surface Wa		ection Date 3-Sep-16 11			ceived Sep-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile Or	ganic Compounds												
	ganic Compounds by SW8 by method SW846 5030 W												
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	SW846 8260C	29-Sep-16	29-Sep-16	GMA	1616774	ļ
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.3	1	"			"	"	
1634-04-4	Methyl tert-butyl ether	< 1.0		μg/l	1.0	0.3	1	"	"		"	"	
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	
108-88-3	Toluene	2.8		μg/l	1.0	0.3	1		"	"	"	"	
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1		"	"	"	"	
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	"				"	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	6.0	1	"	"	"	"	"	
64-17-5	Ethanol	< 200		μg/l	200	23.6	1	"	"	"	"	"	
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	80			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	97			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	126			70-13	0 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	133	SGCMS VOC		70-13	0 %		"	"	u	"	"	
108-95-2	by method SW846 3510C Phenol	< 1.02	U	μg/l	5.21	1.02	1	SW846 8270D	29-Sep-16	06-Oct-16	MSL	1616744	,
Surrogate r	ecoveries:												
367-12-4	2-Fluorophenol	42			15-11	0 %		"	"		"	"	
4165-62-2	Phenol-d5	36			15-11	0 %		"	"	"	"	"	
SVOCs by	<u>/ SIM</u>												
33-32-9	Acenaphthene	< 0.052		μg/l	0.052	0.032	1	SW846 8270D SIM	"	30-Sep-16	MSL	"	
208-96-8	Acenaphthylene	< 0.052		μg/l	0.052	0.033	1	"	"	"	"	"	
120-12-7	Anthracene	< 0.052		μg/l	0.052	0.028	1	"	"		"	"	
56-55-3	Benzo (a) anthracene	< 0.052		μg/l	0.052	0.025	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 0.052		μg/l	0.052	0.038	1	"	"	"	"	"	
205-99-2	Benzo (b) fluoranthene	< 0.052		μg/l	0.052	0.036	1	"	"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 0.052		μg/l	0.052	0.028	1	"	"	"	"	"	
207-08-9	Benzo (k) fluoranthene	< 0.052		μg/l	0.052	0.029	1	"	"	"	"	"	
218-01-9	Chrysene	< 0.052		μg/l	0.052	0.024	1	"	"	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	< 0.052		μg/l	0.052	0.027	1	"	"	"	"	"	
206-44-0	Fluoranthene	< 0.052		μg/l	0.052	0.021	1	"	"	"	"	"	
36-73-7	Fluorene	< 0.052		μg/l	0.052	0.031	1	"	"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.052		μg/l	0.052	0.022	1	II .	"	"	"	"	
91-20-3	Naphthalene	< 0.052		μg/l	0.052	0.028	1	II .	"	"	"	"	
35-01-8	Phenanthrene	< 0.052		μg/l	0.052	0.027	1	"	"	"	"	"	
129-00-0	Pyrene	< 0.052		μg/l	0.052	0.023	1	"	"	"	"	"	
Surrogate r	ecoveries:												
Jun Ogulo n													
•	Benzo (e) pyrene-d12	87			30-13	0 %		"	"	"	"	"	

Sample Io Outfall 0 SC26445				Client P Gulf C	-	5	<u>Matrix</u> Surface W		ection Date 3-Sep-16 11			ceived Sep-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	ole Petroleum Hydrocarbon by method SW846 35100												
	Oil & Grease	< 1.01		mg/l	1.01	0.239	1	EPA 1664B	30-Sep-16	30-Sep-16	SAL	1616827	×
	als by EPA 200/6000 Series by method General Prep												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	28-Sep-16		ВК	1616699	
Total Met	als by EPA 200 Series Meth	ods											
7440-43-9	Cadmium	0.00006	J	mg/l	0.00020	0.00003	1	EPA 200.8	05-Oct-16	07-Oct-16	edt	1617045	X
7440-47-3	Chromium	0.00122		mg/l	0.00050	0.00027	1	"	03-Oct-16	07-Oct-16	"	1616918	X
7440-50-8	Copper	0.0105		mg/l	0.00050	0.00010	1	"	"	04-Oct-16	"	"	X
7440-02-0	Nickel	0.00509		mg/l	0.00025	0.00005	1	w w	05-Oct-16	07-Oct-16		1617045	X
7439-92-1	Lead	0.00089		mg/l	0.00025	0.00002	1	n	"	"	"	"	Х
7440-66-6	Zinc	0.00843		mg/l	0.00500	0.00072	1	"	03-Oct-16	06-Oct-16	"	1616918	X
General C	Chemistry Parameters												
7782-50-5	Total Residual Chlorine	< 0.020		mg/l	0.020	0.006	1	SM4500-CI-G (11)	28-Sep-16 16:16	28-Sep-16 18:09	TY	1616715	X
Prepared	by method SM4500-NH3												
	Ammonia as N	3.36		mg/l	0.200	0.118	1	SM4500-NH3 C. (11)	30-Sep-16	04-Oct-16	EEM	1616848	X
	рН	7.23		pH Units			1	ASTM D 1293-99B	28-Sep-16 18:00	28-Sep-16 18:30	BD	1616735	X
	Salinity	6.20		ppt (1000)	1.00	0.144	1	SM 2520 (01)	10-Oct-16	10-Oct-16	BD	1617429	,
	Total Solids	7,400		mg/l	50.0	15.3	1	SM2540 B (11)	30-Sep-16	06-Oct-16	CMB	1616834	
	Total Suspended Solids	11.0		mg/l	0.7	0.2	1	SM2540D (11)	29-Sep-16	29-Sep-16	CMB	1616778	X
	Total Organic Carbon	9.03		mg/l	1.00	0.246	1	SM5310B (00, 11)	07-Oct-16	07-Oct-16	RLT	1617303	X
Microbiol	ogical Analyses												
	Fecal Coliforms	10	D	CFU/100 ml			10	SM 9222D-97	28-Sep-16 16:34	28-Sep-16 16:34	VIA	1616722	Х
	acted analyses by method NA												
Analysis p	erformed by GZA Geoenviro	nmental, Inc N	<i>Aanchester</i>	; CT* -									
	Aquatic Toxicity	See report						EPA-821-R-02-0 12		11-Oct-16		'[none]'	

Chelsea C					Project # Chelsea	;	Matrix Surface Wa	'	ection Date 3-Sep-16 11			sceived Sep-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Aromatics by SW84	16 8260											
Prepared	by method SW846 5030 V	Vater MS											
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	SW846 8260C	29-Sep-16	29-Sep-16	GMA	1616774	
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.3	1	"	II .	"	"	"	
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"		
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.5	1	II .	"	"	"	"	
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	78			70-13	0 %		"	"	"		"	
2037-26-5	Toluene-d8	96			70-13			"		"	"	"	
17060-07-0	1,2-Dichloroethane-d4	127			70-13			II .	"	"	"	"	
1868-53-7	Dibromofluoromethane	130			70-13			ıı .	"	"	"	"	
	lle Organic Compounds by					- /-							
SVOCs by		Comp											
	by method SW846 3510C												
83-32-9	Acenaphthene	< 0.052		μg/l	0.052	0.032	1	SW846 8270D SIM	29-Sep-16	30-Sep-16	MSL	1616744	
208-96-8	Acenaphthylene	< 0.052		μg/l	0.052	0.033	1		"	"	"	"	
120-12-7	Anthracene	< 0.052		μg/l	0.052	0.028	1	"	"	"	"		
56-55-3	Benzo (a) anthracene	< 0.052		μg/l	0.052	0.025	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 0.052		μg/l	0.052	0.038	1		"	"	"		
205-99-2	Benzo (b) fluoranthene	< 0.052		μg/l	0.052	0.036	1	"	"	"	"		
191-24-2	Benzo (g,h,i) perylene	< 0.052		μg/l	0.052	0.028	1	"	"	"	"		
207-08-9	Benzo (k) fluoranthene	< 0.052		μg/l	0.052	0.029	1	"			"		
218-01-9	Chrysene	< 0.052		μg/l	0.052	0.024	1	"	"		"		
53-70-3	Dibenzo (a,h) anthracene	< 0.052		μg/l	0.052	0.027	1	"	"		"		
206-44-0	Fluoranthene	< 0.052		μg/l	0.052	0.021	1				"		
86-73-7	Fluorene	< 0.052		μg/l	0.052	0.031	1	"	"		"		
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.052			0.052	0.022	1	"	"				
91-20-3	Naphthalene			μg/l	0.052	0.022	1	,,			"		
85-01-8	•	0.108		μg/l									
	Phenanthrene	0.061		μg/l	0.052	0.027	1	"	"	,,	"	"	
129-00-0	Pyrene	< 0.052		μg/l	0.052	0.023	1						
Surrogate r													
	Benzo (e) pyrene-d12	83			30-13	0 %		"	"	"	"	"	
	als by EPA 200/6000 Series I by method General Prep-l												
	Preservation	Field Preserved;		N/A			1	EPA 200/6000 methods	28-Sep-16		BK	1616699	
		pH<2 confirmed											
Total Meta	als by EPA 200 Series Metho	ods											
7440-43-9	Cadmium	< 0.00015	R01, U, D	mg/l	0.00100	0.00015	5	EPA 200.8	05-Oct-16	07-Oct-16	edt	1617045	Χ
7440-50-8	Copper	0.0304		mg/l	0.00050	0.00010	1	II .	03-Oct-16	04-Oct-16	"	1616918	X
7440-02-0	Nickel	0.00831	R01, D	mg/l	0.00125	0.00023	5	"	05-Oct-16	07-Oct-16	"	1617045	Х
7439-92-1	Lead	0.00053	R01, J,	mg/l		0.00011	5	"	"	"	"	"	Х
7440-66-6	Zinc	0.0197		mg/l	0.00500	0.00072	1		03-Oct-16			1616918	Х

Sample Id Chelsea (SC26446				Client Pr Gulf Cl			<u>Matrix</u> Surface W		ection Date 3-Sep-16 11			ceived Sep-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General C	Chemistry Parameters												
7782-50-5	Total Residual Chlorine	< 0.020		mg/l	0.020	0.006	1	SM4500-CI-G (11)	28-Sep-16 16:16	28-Sep-16 18:10	TY	1616715	Χ
Prepared	by method SM4500-NH3	B (11)											
	Ammonia as N	0.210		mg/l	0.200	0.118	1	SM4500-NH3 C. (11)	30-Sep-16	04-Oct-16	EEM	1616848	Х
	рН	7.84		pH Units			1	ASTM D 1293-99B	28-Sep-16 18:00	28-Sep-16 18:30	BD	1616735	Х
	Salinity	28.1		ppt (1000)	1.00	0.144	1	SM 2520 (01)	10-Oct-16	10-Oct-16	BD	1617429	
	Total Solids	34,100		mg/l	500	153	1	SM2540 B (11)	30-Sep-16	06-Oct-16	CMB	1616834	
	Total Suspended Solids	11.1		mg/l	0.5	0.2	1	SM2540D (11)	29-Sep-16	29-Sep-16	CMB	1616778	Х
	Total Organic Carbon	9.17		mg/l	1.00	0.246	1	SM5310B (00, 11)	07-Oct-16	07-Oct-16	RLT	1617303	Χ
	ncted analyses by method NA												
Analysis p	erformed by GZA Geoenviro	nmental, Inc Me	anchester	, CT* -									
	Aquatic Toxicity	See report						EPA-821-R-02-0 12		11-Oct-16		'[none]'	

Volatile Organic Compounds - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1616774 - SW846 5030 Water MS										
Blank (1616774-BLK1)					Pre	epared & Ai	nalyzed: 29-	Sep-16		
Benzene	< 1.0		μg/l	1.0						
Benzene	< 1.0		μg/l	1.0						
Ethylbenzene	< 1.0		μg/l	1.0						
Ethylbenzene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
Naphthalene	< 1.0		μg/l	1.0						
Naphthalene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
o-Xylene	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
Ethanol	< 200		μg/l	200						
					50.0		00	70-130		
Surrogate: 4-Bromofluorobenzene	41.4		μg/l		50.0		83			
Surrogate: 4-Bromofluorobenzene	41.4		μg/l		50.0		83	70-130		
Surrogate: Toluene-d8	48.6		μg/l		50.0		97	70-130		
Surrogate: Toluene-d8	48.6		μg/l		50.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4	58.9		μg/l		50.0		118	70-130		
Surrogate: 1,2-Dichloroethane-d4	58.9		μg/l		50.0		118	70-130		
Surrogate: Dibromofluoromethane	61.0		μg/l 		50.0		122	70-130		
Surrogate: Dibromofluoromethane	61.0		μg/l		50.0		122	70-130		
LCS (1616774-BS1)						epared & A	nalyzed: 29-			
Benzene	20.3		μg/l		20.0		102	70-130		
Benzene	20.3		μg/l		20.0		102	70-130		
Ethylbenzene	18.1		μg/l		20.0		90	70-130		
Ethylbenzene	18.1		μg/l		20.0		90	70-130		
Methyl tert-butyl ether	20.2		μg/l		20.0		101	70-130		
Methyl tert-butyl ether	20.2		μg/l		20.0		101	70-130		
Naphthalene	17.1		μg/l		20.0		85	70-130		
Naphthalene	17.1		μg/l		20.0		85	70-130		
Toluene	19.4		μg/l		20.0		97	70-130		
Toluene	19.4		μg/l		20.0		97	70-130		
Vinyl chloride	22.4		μg/l		20.0		112	70-130		
m,p-Xylene	17.9		μg/l		20.0		89	70-130		
m,p-Xylene	17.9		μg/l		20.0		89	70-130		
o-Xylene	18.6		μg/l		20.0		93	70-130		
o-Xylene	18.6		μg/l		20.0		93	70-130		
Tert-Butanol / butyl alcohol	205		μg/l		200		102	70-130		
Ethanol	327		μg/l		400		82	70-130		
Surrogate: 4-Bromofluorobenzene	51.3		μg/l		50.0		103	70-130		
Surrogate: 4-Bromofluorobenzene	51.3		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	48.6		μg/l		50.0		97	70-130		
Surrogate: Toluene-d8	48.6		μg/l		50.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.1		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.1		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	54.1		μg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	54.1		μg/l		50.0		108	70-130 70-130		

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1616774 - SW846 5030 Water MS										
LCS Dup (1616774-BSD1)					Pre	epared & Ar	nalyzed: 29-	Sep-16		
Benzene	20.6		μg/l		20.0		103	70-130	2	20
Benzene	20.6		μg/l		20.0		103	70-130	2	20
Ethylbenzene	18.1		μg/l		20.0		91	70-130	0.3	20
Ethylbenzene	18.1		μg/l		20.0		91	70-130	0.3	20
Methyl tert-butyl ether	21.2		μg/l		20.0		106	70-130	5	20
Methyl tert-butyl ether	21.2		μg/l		20.0		106	70-130	5	20
Naphthalene	17.0		μg/l		20.0		85	70-130	0.2	20
Naphthalene	17.0		μg/l		20.0		85	70-130	0.2	20
Toluene	19.0		μg/l		20.0		95	70-130	2	20
Toluene	19.0		μg/l		20.0		95	70-130	2	20
Vinyl chloride	22.4		μg/l		20.0		112	70-130	0	20
m,p-Xylene	17.8		μg/l		20.0		89	70-130	0.1	20
o-Xylene	18.9		μg/l		20.0		94	70-130	1	20
m,p-Xylene	17.8		μg/l		20.0		89	70-130	0.1	20
o-Xylene	18.9		μg/l		20.0		94	70-130	1	20
Tert-Butanol / butyl alcohol	227		μg/l		200		113	70-130	10	20
Ethanol	324		μg/l		400		81	70-130	0.8	20
Surrogate: 4-Bromofluorobenzene	51.0		μg/l		50.0		102	70-130		
Surrogate: 4-Bromofluorobenzene	51.0		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	47.7		μg/l		50.0		95	70-130		
Surrogate: Toluene-d8	47.7		μg/l		50.0		95	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.6		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.6		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	54.1		μg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	54.1		μg/l		50.0		108	70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1616744 - SW846 3510C										
Blank (1616744-BLK1)					Pre	epared & A	nalyzed: 29-	Sep-16		
Benzoic acid	< 1.99	U	μg/l	1.99			•			
4-Chloro-3-methylphenol	< 1.23	U	μg/l	1.23						
2-Chlorophenol	< 1.26	U	μg/l	1.26						
2,4-Dichlorophenol	< 1.21	U	μg/l	1.21						
2,4-Dimethylphenol	< 1.41	U	μg/l	1.41						
4,6-Dinitro-2-methylphenol	< 1.87	U	μg/l	1.87						
2,4-Dinitrophenol	< 2.15	U	μg/l	2.15						
2-Methylphenol	< 1.45	U	μg/l	1.45						
3 & 4-Methylphenol	< 1.45	U	μg/l	1.45						
2-Nitrophenol	< 1.45	U	μg/l	1.45						
4-Nitrophenol	< 2.92	U	μg/l	2.92						
Pentachlorophenol	< 1.87	U	μg/l	1.87						
Phenol	< 0.983	U	μg/l	0.983						
2,4,5-Trichlorophenol	< 1.19	U	μg/l	1.19						
2,4,6-Trichlorophenol	< 1.19	U	μg/l	1.08						
Surrogate: 2-Fluorophenol	47.8		μg/l		50.0		96	15-110		
Surrogate: Phenol-d5	44.3		μg/l		50.0		89	15-110		
Blank (1616744-BLK2)					Pre	epared & A	nalyzed: 29-	Sep-16		
Acenaphthene	< 0.050		μg/l	0.050						
Acenaphthylene	< 0.050		μg/l	0.050						
Anthracene	< 0.050		μg/l	0.050						
Benzo (a) anthracene	< 0.050		μg/l	0.050						
Benzo (a) pyrene	< 0.050		μg/l	0.050						
Benzo (b) fluoranthene	< 0.050		μg/l	0.050						
Benzo (g,h,i) perylene	< 0.050		μg/l	0.050						
Benzo (k) fluoranthene	< 0.050		μg/l	0.050						
Chrysene	< 0.050		μg/l	0.050						
Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050						
Fluoranthene	< 0.050		μg/l	0.050						
Fluorene	< 0.050		μg/l	0.050						
Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050						
Naphthalene	< 0.050		μg/l	0.050						
Phenanthrene	< 0.050		μg/l	0.050						
Pyrene	< 0.050		μg/l	0.050						
Surrogate: Benzo (e) pyrene-d12	0.960		μg/l		1.00		96	30-130		
LCS (1616744-BS1)					Pre	epared & A	nalyzed: 29-	Sep-16		
Benzoic acid	20.6		μg/l	1.99	50.0		41	30-130		
4-Chloro-3-methylphenol	42.5		μg/l	1.23	50.0		85	30-130		
2-Chlorophenol	41.4		μg/l	1.26	50.0		83	30-130		
2,4-Dichlorophenol	41.4		μg/l	1.21	50.0		83	30-130		
2,4-Dimethylphenol	39.2		μg/l	1.41	50.0		78	30-130		
4,6-Dinitro-2-methylphenol	41.9		μg/l	1.87	50.0		84	30-130		
2,4-Dinitrophenol	32.6		μg/l	2.15	50.0		65	30-130		
2-Methylphenol	41.7		μg/l	1.45	50.0		83	30-130		
3 & 4-Methylphenol	47.1		μg/l	1.45	50.0		94	30-130		
2-Nitrophenol	42.0		μg/l	1.45	50.0		84	30-130		
4-Nitrophenol	30.9		μg/l	2.92	50.0		62	30-130		
Pentachlorophenol	18.8		μg/l	1.87	50.0		38	30-130		
Phenol	41.8		μg/l	0.983	50.0		84	30-130		
2,4,5-Trichlorophenol	41.3		μg/l	1.19	50.0		83	30-130		
2,4,6-Trichlorophenol	39.4		μg/l	1.08	50.0		79	30-130		

Semivolatile Organic Compounds by GCMS - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1616744 - SW846 3510C										
LCS (1616744-BS1)					Pre	epared & An	nalyzed: 29-	Sep-16		
Surrogate: 2-Fluorophenol	42.9		μg/l		50.0		86	15-110		
Surrogate: Phenol-d5	47.8		μg/l		50.0		96	15-110		
LCS (1616744-BS2)					Pre	epared & An	nalyzed: 29-	Sep-16		
Acenaphthene	0.808		μg/l	0.050	1.00		81	40-140		
Acenaphthylene	0.852		μg/l	0.050	1.00		85	40-140		
Anthracene	0.826		μg/l	0.050	1.00		83	40-140		
Benzo (a) anthracene	0.960		μg/l	0.050	1.00		96	40-140		
Benzo (a) pyrene	1.00		μg/l	0.050	1.00		100	40-140		
Benzo (b) fluoranthene	0.994		μg/l	0.050	1.00		99	40-140		
Benzo (g,h,i) perylene	0.950		μg/l	0.050	1.00		95	40-140		
Benzo (k) fluoranthene	1.07		μg/l	0.050	1.00		107	40-140		
Chrysene	0.938		μg/l	0.050	1.00		94	40-140		
Dibenzo (a,h) anthracene	1.02		μg/l	0.050	1.00		102	40-140		
Fluoranthene	0.864		μg/l	0.050	1.00		86	40-140		
Fluorene	0.858		μg/l	0.050	1.00		86	40-140		
Indeno (1,2,3-cd) pyrene	0.927		μg/l	0.050	1.00		93	40-140		
Naphthalene	0.699		μg/l	0.050	1.00		70	40-140		
Phenanthrene	0.757		μg/l	0.050	1.00		76	40-140		
Pyrene	0.976		μg/l	0.050	1.00		98	40-140		
Surrogate: Benzo (e) pyrene-d12	0.950		μg/l		1.00		95	30-130		
LCS Dup (1616744-BSD1)					Pre	epared & An	nalyzed: 29-	Sep-16		
Benzoic acid	25.5	QR2	μg/l	1.99	50.0	•	51	30-130	21	20
4-Chloro-3-methylphenol	40.6		μg/l	1.23	50.0		81	30-130	5	20
2-Chlorophenol	39.0		μg/l	1.26	50.0		78	30-130	6	20
2,4-Dichlorophenol	40.5		μg/l	1.21	50.0		81	30-130	2	20
2,4-Dimethylphenol	40.6		μg/l	1.41	50.0		81	30-130	3	20
4,6-Dinitro-2-methylphenol	40.4		μg/l	1.87	50.0		81	30-130	4	20
2,4-Dinitrophenol	34.5		μg/l	2.15	50.0		69	30-130	5	20
2-Methylphenol	40.0		μg/l	1.45	50.0		80	30-130	4	20
3 & 4-Methylphenol	46.6		μg/l	1.45	50.0		93	30-130	1	20
2-Nitrophenol	43.1		μg/l	1.45	50.0		86	30-130	3	20
4-Nitrophenol	32.3		μg/l	2.92	50.0		65	30-130	4	20
Pentachlorophenol	19.3		μg/l	1.87	50.0		39	30-130	3	20
Phenol	41.3		μg/l	0.983	50.0		83	30-130	1	20
2,4,5-Trichlorophenol	41.5		μg/l	1.19	50.0		83	30-130	0.5	20
2,4,6-Trichlorophenol	38.0		μg/l	1.08	50.0		76	30-130	4	20
Surrogate: 2-Fluorophenol	42.3		μg/l		50.0		85	15-110		
Surrogate: Phenol-d5	48.2		μg/l		50.0		96	15-110		
LCS Dup (1616744-BSD2)					Pre	epared & An	nalyzed: 29-	Sep-16		
Acenaphthene	0.663		μg/l	0.050	1.00		66	40-140	20	20
Acenaphthylene	0.700		μg/l	0.050	1.00		70	40-140	20	20
Anthracene	0.720		μg/l	0.050	1.00		72	40-140	14	20
Benzo (a) anthracene	0.828		μg/l	0.050	1.00		83	40-140	15	20
Benzo (a) pyrene	0.864		μg/l	0.050	1.00		86	40-140	15	20
Benzo (b) fluoranthene	0.884		μg/l	0.050	1.00		88	40-140	12	20
Benzo (g,h,i) perylene	0.821		μg/l	0.050	1.00		82	40-140	15	20
Benzo (k) fluoranthene	0.876		μg/l	0.050	1.00		88	40-140	20	20
Chrysene	0.812		μg/l	0.050	1.00		81	40-140	14	20
Dibenzo (a,h) anthracene	0.884		μg/l	0.050	1.00		88	40-140	15	20
Fluoranthene	0.751		μg/l	0.050	1.00		75	40-140	14	20

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1616744 - SW846 3510C										
LCS Dup (1616744-BSD2)					Pre	epared & Ar	nalyzed: 29-	Sep-16		
Fluorene	0.728		μg/l	0.050	1.00		73	40-140	16	20
Indeno (1,2,3-cd) pyrene	0.787		μg/l	0.050	1.00		79	40-140	16	20
Naphthalene	0.568	QR2	μg/l	0.050	1.00		57	40-140	21	20
Phenanthrene	0.659		μg/l	0.050	1.00		66	40-140	14	20
Pyrene	0.830		μg/l	0.050	1.00		83	40-140	16	20
Surrogate: Benzo (e) pyrene-d12	0.870		μg/l		1.00		87	30-130		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1616827 - SW846 3510C										
Blank (1616827-BLK1)					Pre	epared & A	nalyzed: 30-	-Sep-16		
Oil & Grease	< 1.00		mg/l	1.00						
LCS (1616827-BS1)					<u>Pr</u>	epared & A	nalyzed: 30-	-Sep-16		
Oil & Grease	59.7		mg/l	1.00	68.6		87	83-101		

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1616918 - EPA 200 Series										
					Dr	oparod: 02	Oot 16 An	alyzed: 06-O	ot 16	
Blank (1616918-BLK1)	0.00044			0.00070	<u>P10</u>	<u>epareu. 03-</u>	OCI-16 AII	aiyzeu. 06-0	<u>Cl-16</u>	
Zinc	0.00344	J	mg/l	0.00072						
Copper	< 0.00010	U	mg/l	0.00010						
Chromium	0.00032	J	mg/l	0.00027	_					
LCS (1616918-BS1)		_	_			epared: 03-		alyzed: 06-O	ct-16	
Zinc	0.106	D	mg/l	0.00718	0.100		106	85-115		
Copper	0.112	D	mg/l	0.00096	0.100		112	85-115		
Chromium	0.110	D	mg/l	0.00266	0.100		110	85-115		
<u>Duplicate (1616918-DUP1)</u>			Source: S	C26445-01	Pre	epared: 03-	Oct-16 An	alyzed: 06-O	ct-16	
Zinc	0.00886		mg/l	0.00072		0.00843			5	20
Chromium	0.00132		mg/l	0.00027		0.00122			8	20
Copper	0.0102		mg/l	0.00010		0.0105			3	20
Matrix Spike (1616918-MS1)			Source: S	C26445-01	Pre	epared: 03-	Oct-16 An	alyzed: 06-O	ct-16	
Zinc	0.112	D	mg/l	0.00718	0.100	0.00843	104	70-130		
Copper	0.105	D	mg/l	0.00096	0.100	0.0105	94	70-130		
Chromium	0.0989	D	mg/l	0.00266	0.100	0.00122	98	70-130		
Post Spike (1616918-PS1)			· ·	C26445-01			Oct-16 An	alyzed: 06-O	ct_16	
Zinc	0.103	D	mg/l	0.00718	0.100	0.00843	95	85-115	<u> </u>	
Chromium	0.105	D	mg/l	0.00266	0.100	0.00043	104	85-115		
Copper	0.111	D	-	0.00200	0.100	0.00122	100	85-115		
	0.111	D	mg/l	0.00030	0.100	0.0103	100	00-110		
atch 1617045 - EPA 200 Series										
Blank (1617045-BLK1)					Pre	epared: 05-	Oct-16 An	alyzed: 07-O	<u>ct-16</u>	
Lead	< 0.00002	U	mg/l	0.00002						
Nickel	< 0.00005	U	mg/l	0.00005						
Cadmium	< 0.00003	U	mg/l	0.00003						
LCS (1617045-BS1)					Pre	epared: 05-	Oct-16 An	alyzed: 07-O	ct-16	
Lead	0.0494	D	mg/l	0.00022	0.0500		99	85-115		
Cadmium	0.0520	D	mg/l	0.00030	0.0500		104	85-115		
Nickel	0.0507	D	mg/l	0.00046	0.0500		101	85-115		
Duplicate (1617045-DUP1)			Source: S	C26446-01	Pre	epared: 05-	Oct-16 An	alyzed: 07-O	ct-16	
Lead	0.00081	QR8, R01, J, D	mg/l	0.00011		0.00053			42	20
Cadmium	< 0.00015	R01, U, D	mg/l	0.00015		BRL				20
Nickel	0.00850	R01, D	mg/l	0.00023		0.00831			2	20
Matrix Spike (1617045-MS1)			Source: S	C26446-01	Pre	epared: 05-	Oct-16 An	alyzed: 07-O	<u>ct-16</u>	
Lead	0.0453	D	mg/l	0.00022	0.0500	0.00053	90	70-130		
Cadmium	0.0443	D	mg/l	0.00030	0.0500	BRL	89	70-130		
Nickel	0.0564	D	mg/l	0.00046	0.0500	0.00831	96	70-130		
Post Spike (1617045-PS1)			Source: S	C26446-01	<u>P</u> re	<u>epared: 0</u> 5-	Oct-16 An	alyzed: 07-O	ct-16	
Lead	0.0472	D	mg/l	0.00022	0.0500	0.00053	93	85-115		
Nickel	0.0593	D	mg/l	0.00046	0.0500	0.00831	102	85-115		
INICKEI										

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1616715 - General Preparation						-100411				
Blank (1616715-BLK1)					Pre	enared & A	nalyzed: 28	-Sep-16		
Total Residual Chlorine	< 0.020		mg/l	0.020	<u></u>	oparoa a ri	Haryzoa. 20	<u> </u>		
LCS (1616715-BS1)			J		Pre	epared & A	nalyzed: 28	-Sep-16		
Total Residual Chlorine	0.051		mg/l	0.020	0.0500	-	101	90-110		
<u>Duplicate (1616715-DUP1)</u>			Source: SC	26446-01	Pre	epared & A	nalyzed: 28	-Sep-16		
Total Residual Chlorine	0.014	J	mg/l	0.020		0.014	-		0.7	20
Matrix Spike (1616715-MS1)			Source: SC	26446-01	Pre	epared & A	nalyzed: 28	-Sep-16		
Total Residual Chlorine	0.029	QM1	mg/l	0.020	0.0500	0.014	31	80-120		
Matrix Spike Dup (1616715-MSD1)			Source: SC	26446-01	Pre	epared & A	nalyzed: 28	-Sep-16		
Total Residual Chlorine	0.028	QM1	mg/l	0.020	0.0500	0.014	29	80-120	2	200
Reference (1616715-SRM1)					Pre	epared & A	nalyzed: 28	-Sep-16		
Total Residual Chlorine	0.107		mg/l	0.020	0.112		96	85-115		
Batch 1616735 - General Preparation										
<u>Duplicate (1616735-DUP1)</u>			Source: SC	26446-01	Pre	epared & A	nalyzed: 28	-Sep-16		
pH	7.86		pH Units			7.84			0.3	5
Reference (1616735-SRM1)						epared & A	nalyzed: 28			
рН	5.99		pH Units		6.00		100	97.5-102. 5		
Reference (1616735-SRM2)					<u>Pre</u>	epared & A	nalyzed: 28	-Sep-16		
рН	6.01		pH Units		6.00		100	97.5-102. 5		
Batch 1616778 - General Preparation								J		
Blank (1616778-BLK1)					Pre	epared & A	nalyzed: 29	-Sep-16		
Total Suspended Solids	< 0.5		mg/l	0.5						
LCS (1616778-BS1)					Pre	epared & A	nalyzed: 29	-Sep-16		
Total Suspended Solids	96.0		mg/l	10.0	100		96	90-110		
Batch 1616834 - General Preparation										
Blank (1616834-BLK1)					Pre	epared: 30-	-Sep-16 Ar	nalyzed: 06-O	ct-16	
Total Solids	< 5.00		mg/l	5.00						
LCS (1616834-BS1)					Pre	epared: 30-	-Sep-16 Ar	nalyzed: 06-O	ct-16	
Total Solids	1110		mg/l	10.0	1100		101	90-110		
Duplicate (1616834-DUP1)			Source: SC		Pre		-Sep-16 Ar	nalyzed: 06-O		
Total Solids	33100		mg/l	500		34100			3	5
Batch 1616848 - General Preparation										
Blank (1616848-BLK1)					<u>Pre</u>	epared: 30-	-Sep-16 Ar	nalyzed: 04-O	ct-16	
Ammonia as N	< 0.200		mg/l	0.200	_					
LCS (1616848-BS1)			"	0.000	·	epared: 30-		nalyzed: 04-O	ct-16	
Ammonia as N	5.18		mg/l	0.200	5.00		104	90-110	-1.40	
Reference (1616848-SRM1)	4.00			0.000		epared: 30-		nalyzed: 04-O	<u>Ct-16</u>	
Ammonia as N	1.89		mg/l	0.200	2.16		88	86-114		
Batch 1617303 - General Preparation					D	opered o *	nolyzod: 07	Oct 16		
Blank (1617303-BLK1) Total Organic Carbon	< 1.00		ma/l	1 00	Pre	epared & A	nalyzed: 07	<u>-UCI-16</u>		
Total Organic Carbon	< 1.00		mg/l	1.00	D	anarod ° ^	nalvzod: 07	Oct 16		
LCS (1617303-BS1) Total Organic Carbon	14.8		mg/l	1.00	15.0	сраге й & А	nalyzed: 07 99	- <u>Oct-16</u> 85-115		
Reference (1617303-SRM1)	14.0		my/i	1.00		anared & A	99 nalyzed: 07			
Total Organic Carbon	10.3		mg/l	1.00	10.0	<u>-μαιτά & Α</u>	103	95-105		
Batch 1617429 - General Preparation			-							
<u>Duplicate (1617429-DUP1)</u>			Source: SC	26445-01	Pre	epared & A	nalyzed: 10	-Oct-16		
Salinity	6.28		ppt (1000)	1.00		6.20			1	10

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1617429 - General Preparation									
Reference (1617429-SRM1)				Pr	epared & Ana	alyzed: 10-	-Oct-16		
Salinity	10.1	ppt (1000)	1.00	10.0		101	90-110		
Reference (1617429-SRM2)				<u>Pr</u>	epared & Ana	alyzed: 10-	-Oct-16		
Salinity	10.3	ppt (1000)	1.00	10.0		103	90-110		

Notes and Definitions

D Data reported from a dilution

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

QM1 The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

R01 The Reporting Limit has been raised to account for matrix interference.

SGCMSVOCSurrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates with three required by program methods.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are considered out of hold time at the time of sample receipt.

OG The required Matrix Spike and Matrix Spike Duplicate (MS/MSD) for Oil & Grease method 1664A can only be analyzed when the client has submitted sufficient sample volume. An extra liter per MS/MSD is required to fulfill the method QC criteria. Please refer to Chain of Custody and QC Summary (MS/MSD) of the Laboratory Report to verify ample sample volume was submitted to fulfill the requirement.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt. All soil samples are analyzed as soon as possible after sample receipt.

LIV The initial volume for this sample has been reduced due to sample matrix and/or historical data therefore elevating the reporting limit.

ACUTE AQUATIC TOXICITY TEST REPORT

Gulf Oil Terminal Chelsea, MA

Test Start Date: ______9/29/16

Test Period:	September 2016
R	eport Prepared by:
A Division of	w England Bioassay FGZA GeoEnvironmental, Inc. 77 Batson Dr. anchester, CT 06042
NEB Proje	ect Number: 05.0045469.00
Report Date:	October 11, 2016
R	eport Submitted to:
1	Spectrum Analytical, Inc. 1 Almgren Drive awam, MA 01001
Sample ID:	SC26445-01/SC26446-01

If you have any questions concerning these results, please contact the Lab Manager, Kim Wills, at (860) 858-3153 or kimberly.wills@gza.com.

Whole Effluent Toxicity Testing Report Instruction Form

Client Name/Project: Spectrum / Gulf Oil Terminal	Test Date:	9/29/16
Sample ID: <u>SC26445-01/SC26446-01</u>		
Your results were as follows:		
Monitoring Only		
□ Fail – Please proceed according to the instructions in	your permit.	
□ Invalid – Retesting is still required. Retest report	will be sent at a	later date under separate cover.
□ Original Test Invalid – Valid retest performed. Bo	th test and retes	t results are attached.
☐ Retesting will be or has been performed according to of EPA-New England's species-specific, self-implementations.		
Protocols outlined in the attached copy of EPA-policy for alternate dilution water. The alternate dil should be described as follows: "synthetic laborat protocols, by adding specified amounts of salts into receiving water." Writing this letter should help you	New England's ution water you sory water made deionized water i	species-specific, self-implementing select for future tests for this species up according to EPA's toxicity test n order to match the hardness of our
☐ Available information is insufficient to determine who to your permit limits. Please submit a current copy of		

Please complete the items on this list before reporting these results according to the instructions in the "Monitoring and Reporting" Section of your permit.

the status of future tests results and help ensure your compliance with permit requirements.

- Please complete, sign and date the upper portion of the "Whole Effluent Toxicity Test Report Certification" page which is the page directly following this page.
- Fill in the Sample Type and Sample Method (upper right) and the Permit Limits (lower left) on the New England Bioassay - EPA Toxicity Test Summary Sheet(s) if they are incomplete.
- Fill in any missing information on the NEB Chain-of-Custody documents. This includes ensuring that the following information is recorded: Sampler's name and title, Facility name and address, Sample collection methods, Sample collection start and end dates and times, Types of sample, Chlorination status of samples upon shipment to NEB, Site description and Sample collection procedures.
- Monitoring results should be summarized on your monthly Discharge Monitoring Report Form.
- Signed and dated originals of this report must be submitted to the State (and Federal) Agencies specified in the "Monitoring and Reporting" section of your permit.

Questions? Please contact the Lab Manager, Kim Wills, at (860) 858-3153 or kimberly.wills@gza.com.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Permittee)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on	[Date]	[Authorized Signature]
		[Print or Type Name and Title]
		[Print or Type the Permittee's Name]
		[Print or Type the NPDES Permit No.]

Since the WET test and report check is complicated, the New England Bioassay Aquatic Toxicity Laboratory has certified the validity of the WET test data in the section below. Please note that this does not relieve the permittee from its responsibility to sign and certify the report under 40 C.F.R. S 122.41(k).

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on

[Date]

[Attawiorized Signature]

Kim Wills, Laboratory Manager [Print or Type Name and Title]

New England Bioassay

[Print or Type Name of Bioassay Laboratory]

24. Telephone Contacts

If you have questions, please contact Joy Hilton, Water Technical Unit, at (617) 918-1877 or David McDonald, Ecosystem Assessment Unit, at (617) 918-8609.

NEW ENGLAND BIOASSAY, A DIVISION OF GZA EPA TEST SUMMARY SHEET

Facility Name: Gulf C	Jil Lerminal	Test Start Date:	9/29/16
	er: <u>MA0001091</u>	Outfall Number:	003
Toot Tyres	Toot Caralian	Camula T	Commis Made 1
Test Type	Test Species	Sample Type	Sample Method
X Acute	_ Fathead Minnow	_ Prechlorinated	X Grab
_ Chronic	_ Ceriodaphnia Dubia		_ Composite
_ Modified	_ Daphnia Pulex	_ Unchlorinated	_ Flow-thru
(Chronic reporting	•	_ Chlorinated	_Other
LC50 values)	_ Sheepshead		
_ 24-Hour Screening	_ Menidia		
	Sea Urchin	TRC conc. 0.019 mg	z/L
	Selenastrum		
	Other		
Dilution Water	(-)		
X Receiving water col	llected at a point immediat	tely upstream of or away fron	the discharge:
		: Chelsea River	
		a hardness to generally refle	
	er; (Surface water name:		
Synthetic water prer	pared using either Millinor	e Mill-Q or equivalent deion	zed water and
		ombined with mineral water;	and whom when
	nixed with deionized water		
	mixed with defenized water	•	
_ 0 11101		-	
Effluent Sampling Date	e(s)· 9/28/16		
Zimuum Sumpining Dur	(a)		
Effluent Concentration	s Tested (in%): 0 63	<u>25 12.5 25 50 100</u>	
	it Concentration):		
(1 omit Limi	tt Concentration).	monitoring only	
Was effluent salinity a	djusted? Yes If yes, to	o what value? 25 ppt	
Trus extraoric surring a	ajastea. <u>100</u> 11 jes, t	=== ppt	
Reference Toxicant tes	st date: 9/7/16 F	Reference Toxicant Test Acce	ptable: Yes X No _
Age and Age Range of	Test Organisms 4 day	s (< 24 hours) Source of Org	anieme NFR
rige and rige Range of	1 cst Organisms + day	s (24 hours) source or org	
	TEST RESULTS &	&PERMIT LIMITS	
	Test Accepta	STREETS E-West 1900 IB	
A. Synthetic Water Co.	ntrol		
Mean Control Survival		Mean Control Reproduction:	N/A
Mean Control Weight:		Mean Control % Fertilization	
Mean Connor Weight.	IV/A	Weari Control 70 Pertilization	I
B. Receiving Water Co	entrol		
_		Man Cantual Banna dustions	NT/A
Mean Control Survival		Mean Control Reproduction:	
Mean Control Weight:	N/A	Mean Control % Fertilization	1: <u>N/A</u>
C. Lab Culture Control	l Yes No X		
e. Lue cuitaie control	110 110 110		
D. Thiosulfate Control	Yes_ No X		
	Tast V	alakilit:	
	1 est Va	riability	
Test PMSD (growth)	N/A		
Test PMSD (growth)			

Permit Limits & Test Results

Limits		Results
LC50 N/A	LC50	>100%
	Upper Value	±∞
	Lower Value	100%
	Data Analysis	
	Method Used	Graphical
A-NOEC N/A	A-NOEC _	100%
C-NOEC N/A	C-NOEC _	N/A
	LOEC _	N/A
IC25N/A	IC25	
IC50 N/A	IC50	(macanana)

PMSD Comparison Discussion – N/A

Concentration-Response Evaluation

The concentration-response relationship observed in this data set corresponds to the following item number in Chapter Four of "Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)", EPA 821-B-00-004, July 2000:

- X 1. Ideal concentration-response relationship
- 2. All or nothing response
- 3. Stimulatory response at low concentrations and detrimental effects at higher concentrations
- 4. Stimulation at low concentrations but no significant effect at higher concentrations
- 5. Interrupted concentration-response: significant effects bracketed by non-significant effects
- 6. Interrupted concentration-response: non-significant effects bracketed by significant effects
- _ 7. Significant effects only at highest concentration
- 8. Significant effects at all test concentrations but flat concentration-response curve
- 9. Significant effects at all test concentrations with a sloped concentration-response curve
- 10. Inverse concentration-response relationship

The concentration-response relationship was reviewed according to the above guidance document and the following determination was made:

- \underline{X} 1. Results are reliable and should be reported.
- _ 2. Results are anomalous. An explanation is provided in the body of the report.
- _ 3. Results are inconclusive and the test should be repeated with a newly collected sample. An explanation is provided in the body of the report.

NEW ENGLAND BIOASSAY, A DIVISION OF GZA EPA TEST SUMMARY SHEET

Facility Name: Gulf C	oll Terminal	lest Start Date:	9/29/16
	er: MA0001091		003
Test Type	Tost Species	Samula Truna	Comple Mathed
Test Type	Test Species	Sample Type	Sample Method
X Acute	Fathead Minnow	Prechlorinated	X Grab
_Chronic	_ Ceriodaphnia Dubia		_Composite
Modified	_ Daphnia Pulex	_Unchlorinated	_ Flow-thru
(Chronic reporting	_ Mysid Shrimp	Chlorinated	Other
LC50 values)		5 .	
24-Hour Screening			
	Sea Urchin	TRC conc. 0.019 mg	-/I
	Selenastrum	1100 conc	y L
			
	_Other		
Dilution Water			
\underline{X} Receiving water co	llected at a point immedi	iately upstream of or away from	n the discharge;
(Receiving water na	ame and sampling location	on: Chelsea River)
Alternate Surface W	ater of known quality ar	nd a hardness to generally refle	ct the characteristics
of the receiving water	er; (Surface water name:	ore Mill-Q or equivalent deion)
Synthetic water prer	pared using either Millip	ore Mill-O or equivalent deion	ized water and
reagent grade chemic	cals: or deionized water	combined with mineral water;	
	ixed with deionized water		
_		.e.i.,	
_Other			
ECC 4C 1' D4	() 0/00/17		
Effluent Sampling Dat	e(s):9/28/16		
T.07	T . 1 (1 0 () 0 0 0	505 105 05 50 100	
		<u>5.25 </u>	
* (Permit Limi	it Concentration): mor	nitoring only	
Was effluent salinity a	djusted? <u>Yes</u> If yes,	to what value? 25 ppt	
Dafaranaa Taviaant taa	t data. 0/9/16 E	Onforman Toxicont Toxt Annum	tahla, Vas V. Na
Reference Toxicant les	st date: 9/8/10 F	Reference Toxicant Test Accep	table: Yes A No_
Age and Age Range of	Test Organisms 11 days	s (<24 hours) Source of Orga	anieme AI
Age and Age Range of	Test Organisms II days	Source of Orga	misms <u>Al</u>
	TEST RESULTS	S &PERMIT LIMITS	
		tability Criteria	
	1 est Accep	tability Criteria	
A Synthotic Water Co	ntrol		
A. Synthetic Water Co		M C 1 10 1 1	B T/A
Mean Control Survival		Mean Control Reproduction:	
Mean Control Weight:	N/A	Mean Control % Fertilization	1: <u>N/A</u>
B. Receiving Water Co	ontrol		
Mean Control Survival	:100%	Mean Control Reproduction:	N/A
Mean Control Weight:		Mean Control % Fertilization	
Tribun Control Worging		Marie Control / 01 Oremzano	
C. Lab Culture Control	l Yes No X		
C. Edo Culture Control	1 105_ 110 <u>11</u>		
D. Thiosulfate Control	Ves No Y		
D. Timosumate Control		/ariability	
	1 est V	/ariability	
To A DMOD (15	NT/ A		
Test PMSD (growth)	<u>N/A</u>		
Test PMSD (reproduct	ion.) <u>N/A</u>		

Permit Limits & Test Results

	<u>Limits</u>		Results
LC50	N/A	LC50	>100%
		Upper Value	±∞
		Lower Value	100%
		Data Analysis	
		Method Used	Graphical
A-NOEC	N/A	A-NOEC	100%
C-NOEC	N/A	C-NOEC	N/A
		LOEC	N/A
IC25	N/A	IC25	
IC50	N/A	IC50	

PMSD Comparison Discussion - N/A

Concentration-Response Evaluation

The concentration-response relationship observed in this data set corresponds to the following item number in Chapter Four of "Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)", EPA 821-B-00-004, July 2000:

- X 1. Ideal concentration-response relationship
 2. All or nothing response
 3. Stimulatory response at low concentrations and detrimental effects at higher concentrations
 4. Stimulation at low concentrations but no significant effect at higher concentrations
 5. Interrupted concentration-response: significant effects bracketed by non-significant effects
 6. Interrupted concentration-response: non-significant effects bracketed by significant effects
 7. Significant effects only at highest concentration
 8. Significant effects at all test concentrations but flat concentration-response curve
- 9. Significant effects at all test concentrations with a sloped concentration-response curve
 10. Inverse concentration-response relationship

The concentration-response relationship was reviewed according to the above guidance document and the following determination was made:

- X 1. Results are reliable and should be reported.
- _ 2. Results are anomalous. An explanation is provided in the body of the report.
- 3. Results are inconclusive and the test should be repeated with a newly collected sample. An explanation is provided in the body of the report.

MYSIDOPSIS BAHIA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Test Method: Mysidopsis bahia Acute Toxicity Test – Method 2007.0

Test Type: Acute Static Non-Renewal Saltwater Test

Salinity: $25 \text{ ppt} \pm 10\%$ for all dilutions by dry ocean salts (Instant Ocean)

Temperature: 25 ± 1 °C

<u>Light Quality</u>: Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 250 mL

Test Solution Volume: Minimum 200 mL

Age of Test Organisms: 4 days

Number of Mysids

Per Test Chamber: 10

Number of Replicate Test
Chambers Per Treatment: 4

Total Number of Mysids

Per Test Concentration: 40

Feeding Regime: Light feeding using concentrated *Artemia* nauplii while holding

prior to initiating the test.

Aeration: Aerated at <100 bubbles/minute

Dilution Water: Chelsea River

Alternate Control Water: NEB Artificial Salt Water (salinity 25 ± 1 ppt)

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

Test Duration: 48 hours

Effect measured: Mortality – no movement of body appendages on gentle prodding.

<u>Test Acceptability:</u> $\geq 90\%$ survival of test organisms in control solution Yes <u>X</u> No_

<u>Sampling Requirements:</u> Samples first used within 36 hours of collection Yes \underline{X} No_

Sample Volume Required: Minimum 2 liters

Test Organism Source: New England Bioassay

Test Acceptability Criteria	: Mean Alternate Water Contro Mean Dilution Water Contro		
Test Results:	<u>I</u>	<u>imits</u>	Results
	48-hour LC50 Upper Value Lower Value Data Analysis Method Used A-NOEC	N/A	$ \begin{array}{r} $
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Toxicant Source: Organism Source: 48-hour LC50: In Acceptable Range:	NEB New I	m Dodecyl Sulfate Artificial Salt Water England Bioassay England Bioassay 17.6 mg/L X No
Dechlorination Procedures	: Chlorine is measured using	4500 CL-	G DPD Colorimetric Method.
\underline{X} Dechlorination was not red	quired.		
Since dechlorination of the e with sodium thiosulfate was dechlorinated sample.	by adding sodium thiosulfate the ffluent was necessary, a thiosulate in the test series also included in the test series also levated due to interference.	ulfate con . Chlorin	trol of diluent water spiked ne was mg/L in a
	s re-measured following aerat		was found to be mg/L.

MENIDIA BERYLLINA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Test Method: Menidia beryllina Acute Toxicity Test – Method 2006.0

Test Type: Acute Static Non-Renewal Saltwater Test

Salinity: 25 ppt \pm 2 ppt by adding dry ocean salts (Instant Ocean)

Temperature: $25 \pm 1^{\circ}$ C

Light Quality: Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 250 mL

<u>Test Solution Volume:</u> Minimum 200 mL/replicate

Age of Test Organisms: 11 days old (24 hour age range)

Number of Fish Per

Test Chamber: 10

Number of Replicate Test
Chambers Per Treatment: 4

<u>Total Number of Organisms</u> <u>Per Test Concentration:</u> 40

Feeding Regime: Light feeding using concentrated *Artemia* nauplii while holding

prior to initiating the test.

Aeration: Aerated at <100 bubbles/minute

Dilution Water: Chelsea River

Alternate Control Water: NEB Artificial Salt Water (salinity 25 ± 1 ppt)

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

Test Duration: 48 hours

Effect measured: Mortality – no movement on gentle prodding.

<u>Test Acceptability:</u> $\geq 90\%$ survival of test organisms in control solution Yes X No_

Sampling Requirements: Samples first used within 36 hours of collection Yes X No

Sample Volume Required: Minimum 2 liters

Test Organism Source: Aquatic Indicators

Test Acceptability Criteria	:Mean Alternate Water Con Mean Dilution Water Cont		
Test Results:		Limits	Results
	48-hour LC50 Upper Value Lower Value Data Analysis Method Use A-NOEC	N/A d	$ \begin{array}{r} $
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Toxicant Source: Organism Source: 48-hour LC50: In Acceptable Range	NEB A New E Aquati	n Dodecyl Sulfate Artificial Salt Water England Bioassay ic Indicators 6 mg/L X No
Dechlorination Procedures	: Chlorine is measured usin	g 4500 CL-0	G DPD Colorimetric Method.
X Dechlorination was not re-	quired.		
Sample was dechlorinated I Since dechlorination of the e with sodium thiosulfate was dechlorinated sample. Chlorine measurement was filtered sample. Total Residual Chlorine was a second control of the end of	ffluent was necessary, a thic also included in the test seri s elevated due to interference s re-measured following aer	es. Chlorine e. Chlorine ration, and w	rol of diluent water spiked e was mg/L in a
Additional Notes or Other	Conditions Affecting the T	<u>'est</u> :	
	=		-

NEW ENGLAND BIOASSAY ACUTE TOXICITY DATA FORM COVER SHEET FOR LC50 TESTS

	CO	VER SHE	ET FOR LC50 TEST	S	
CLIENT:	Eurofins Spectrum /	Analytical		M.bahia TEST ID#	16-1436a
ADDRESS:				M.beryllina TEST ID#	16-1436b
	Agawam, MA 0			COC#	C36-3439/40
SAMPLE TYPE:				PROJECT #	05.0045469.00
DILUTION WATER:	Chelsea Riv	er			
Sample Date(s):	9/28/16		Received On:	9/29/1	6
INVE	ERTEBRATES			<u>VERTEBRATES</u>	
TEST SE	T UP (TECH INIT)	СВ		TEST SET UP (TECH INIT)	СВ
		lopsis bahia		TEST SPECIES	Menidia beryllina
	NEB LOT# Mb	16 (9-25)		NEB LOT#	Ss16AI (9-27)
	AGE	4 days		AGE	11days
	ON VOLUME (mls)	200		SOLUTION VOLUME (mls)	700
NO. ORGANISMS PER		10		SMS PER TEST CHAMBER	10
NO. ORGANISMS PER C		40		MS PER CONCENTRATION	40
NO. ORGANISM	IS PER CONTROL	40	NO. OF	RGANISMS PER CONTROL	40
	DATE	ГІМЕ		DATE	TIME
TEST START:	9/29/16	1208	TEST START:	9/29/16	1236
TEST END:	10/1/16	1131	TEST END:	10/1/16	1139
LABORATORY CONTRO	L WATER:		Salinity (ppt)	Alkalinity (mg/L CaCO ₃₎	
ARTIFICIAL SW:	NEB BATCH# CI	RI036-030	24	120	
2,00	sidopsis bahia LC50 T			Menidia beryllina LC5	
METHOD	\ /	Confidence Limits	METHOD	LC50 (%)	95% Confidence Limits
BINOMIAL/GRAPHICAL	>100% 10	00%±∞	BINOMIAL/GRAPHICAL	>100%	100%±∞
PROBIT			PROBIT		
SPEARMAN KARBER			SPEARMAN KARBER		
NOAEL	100%		NOAEL	100%	
NOEC: NO OBSERVAE		NTRATION		10070	
Comments:			n added to about 10L effluer brought up to 16L with D.I.		
REVIEWD BY:	Mili			DATE:	10/11/10

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	16-1436a	Test Organism:	M ₃	sidopsis ba	hia
Project #:	05.0045469.00	Organism Age:		4	days
Facility Name:	Gulf Oil Terminal	Test Duration:	48	(hours)	
Date Sampled:	9/28/16	Beginning Date:	9/29/16	Time: _	1208
Date Received:	9/29/16	Dilution Water S	ource:	Chelsea	River
Sample ID:	Outfall 003	Salinity:	25		pt

Effluent Conc. %		umber o Survivin rganisn	g		issolve Oxyger (mg/L)		Те	mperati (°C)	ure		pH (su)			Salinity (ppt)	
Initials	СВ	СВ	CW	СВ	СВ	CW	СВ	СВ	CW	СВ	СВ	cw	СВ	СВ	CW
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	10	10	7.4	6.6	5.9	25.1	24.4	24.6	7.9	8.0	7.8	25	25	26
Control B	10	10	10		6.5	4.9		24.7	24.8		8.1	7.8		25	26
Control C	10	10	10		6.5	4.9		24.9	24.8		8.1	7.8		25	25
Control D	10	10	10		6.4	4.6		24.9	25.0		8.1	7.8		25	25
Diluent A	10	10	10	7.3	6.2	4.2	25.1	25.1	25.1	7.7	7.8	7.4	25	25	25
Diluent B	10	10	10		6.0	3.3		25.1	25.2		7.8	7.4		25	25
Diluent C	10	10	10		6.3	3.4		24.9	25.0		7.8	7.5		25	25
Diluent D	10	10	10		6.1	4.1		25.1	24.6		7.8	7.5		25	25
6.25 A	10	10	10	7.3	6.3	4.3	25.2	24.8	24.8	7.8	7.9	7.6	25	25	25
6.25 B	10	10	10		6.4	4.4		24.8	24.9		7.9	7.6		25	25
6.25 C	10	10	10		6.4	4.1		24.8	25.0		7.9	7.6		25	25
6.25 D	10	10	10		6.5	4.1		25.1	25.3		7.9	7.5		24	24
12.5 A	10	10	10	7.3	6.2	3.7	25.1	25.1	25.0	7.9	8.0	7.7	25	25	26
12.5 B	10	10	10		6.6	4.0		24.8	25.2		8.0	7.6		25	25
12.5 C	10	10	10		6.6	3.8		24.8	25.2		8.0	7.6		25	25
12.5 D	10	10	10		6.5	4.0		24.8	25.1		7.9	7.6		25	25
25 A	10	10	10	7.3	6.7	5.0	25.2	24.4	24.8	8.1	8.0	7.7	24	25	26
25 B	10	10	10		6.6	5.0		24.7	24.9		8.0	7.8		25	25
25 C	10	10	10		6.5	4.1		24.8	25.2		8.0	7.7		24	25
25 D	10	10	10		6.4	4.3		24.7	24.9		8.0	7.7		25	25

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	16-1436a	Test Organism:	M	ysidopsis ba	hia
Project #:	05.0045469.00	Organism Age:		4	days
Facility Name:	Gulf Oil Terminal	Test Duration:	48	(hours)	
Date Sampled:	9/28/16	Beginning Date:	9/29/16	Time: _	1208
Date Received:	9/29/16	Dilution Water S	ource:	Chelsea	River
Sample ID:	Outfall 003	Salinity:	25	р	pt

Effluent Conc. %		Number of Surviving Organisms			Dissolved Temperature pH Salinity Oxygen (°C) (su) (ppt) (mg/L)			Oxygen							
Initials	СВ	СВ	CW	СВ	СВ	cw	СВ	СВ	CW	СВ	СВ	cw	СВ	СВ	cw
All of the	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
50 A	10	10	10	7.7	6.2	4.6	25.2	24.9	25.0	8.3	8.2	7.9	24	24	24
50 B	10	10	10		6.2	4.5		24.9	25.0		8.2	7.9		24	24
50 C	10	10	10		6.4	4.6		24.8	25.1		8.2	7.8		24	24
50 D	10	10	10		6.4	4.3		24.9	25.0		8.2	7.9		24	24
100 A	10	10	10	8.8	6.5	4.6	25.3	24.7	24.8	8.6	8.4	8.1	23	24	25
100 B	10	10	9		6.5	4.9		24.7	24.9		8.4	8.1		24	24
100 C	10	10	10		6.6	4.9		24.7	24.9		8.4	8.1		24	24
100 D	10	10	10		6.6	4.9		25.0	24.9		8.5	8.2		24	24
	ļ														
	-												-		
	1														

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

CETIS Analytical Report

Report Date:

10 Oct-16 17:14 (p 1 of 2)

Test Code: 16-1436a | 19-4574-4824

Mysido	psis 90	6-h Acute Surviv	al Test										Ne	w Engla	and Bioassa
Analysis ID: 07-6169-9501 Analyzed: 10 Oct-16 17:1			point: lysis:	: 48h Survival Rate Linear Interpolation (ICPIN)						IS Vers		CETISv1 Yes	.9.2		
Batch ID: 05-9665-5259					Survival (48h)										
Start Date: 29 Sep-16 12:08			Protocol:		EPA/821/R-02-012 (2002)					Analyst: Diluent: Receiving Water					
Ending Date: 01 Oct-16 11:3		-			Mysidopsis bahia					Brine:					
-		47h	•		ırce: İn-House Cultu						Age: 4d				
Sample ID: 06-6895-1136		Cod	la·	27DF6260					Clie	Client: Spectrum Analytical					
Sample Date:						Applicable					Project:				
Receipt Date:						Gulf Oil Terminal (MA000109									
Sample Age: 3					tion:										
		lation Options													
X Trans	-	Y Transform	See	d	Res	amples	Exp 95%	CL.	Metho	d					
Log(X) Linear				6155 200						Interpolation					
Point E	stimat	es													
Level	%	95% LCL	95% UCL	TU		95% LCL	95% UCL								
LC50	>100	n/a	n/a	<1		n/a	n/a								
48h Sur	rvival F	Rate Summary	10				Calcu	ılated	Variate	(A/B)					
Conc-%	, D	Code	Count	Mean		Min	Max	Std	Err	Std Dev	CV%		%Effect	A	В
)		D	4	1.0000)	1.0000	1.0000	0.00	000	0.0000	0.00%	6	0.0%	40	40
6.25			4	1.0000)	1.0000	1.0000	0.00	000	0.0000	0.00%	6	0.0%	40	40
12.5			4	1.0000)	1.0000	1.0000	0.00	000	0.0000	0.00%	6	0.0%	40	40
25			4	1.0000)	1.0000	1.0000	0.00	000	0.0000	0.00%	6	0.0%	40	40
50			4	1.0000)	1.0000	1.0000	0.00	000	0.0000	0.00%	6	0.0%	40	40
100			4	0.9750) j	0.9000	1.0000	0.02	50	0.0500	5.13%	6	2.5%	39	40
18h Sur	rvival F	Rate Detail													
Conc-%	b	Code	Rep 1	Rep 2		Rep 3	Rep 4								
)		D	1.0000	1.0000)	1.0000	1.0000								
5.25			1.0000	1.0000)	1.0000	1.0000								
12.5			1.0000	1.0000)	1.0000	1.0000								
25			1.0000	1,0000)	1.0000	1.0000								
50			1.0000	1.0000)	1.0000	1.0000								
100			1.0000	0.9000)	1.0000	1.0000								
I8h Sur	rvival F	Rate Binomials													
Conc-%		Code	Rep 1	Rep 2		Rep 3	Rep 4								
)		D	10/10	10/10		10/10	10/10								
6.25			10/10	10/10		10/10	10/10								
12.5			10/10	10/10		10/10	10/10								
25			10/10	10/10		10/10	10/10								
			10/10	10/10		10/10	10/10								
50			. 0, 10	10/10		. 0, 10	. 0, . 0								
50 100			10/10	9/10		10/10	10/10								

Report Date:

10 Oct-16 17:14 (p 2 of 2)

Test Code:

16-1436a | 19-4574-4824

Mysidopsis 96-h Acute Survival Test

New England Bioassay

Analysis ID: Analyzed:

07-6169-9501

10 Oct-16 17:14

Endpoint: 48h Survival Rate

Analysis: Linear Interpolation (ICPIN) **CETIS Version:**

CETISv1.9.2 Official Results: Yes

Graphics

Report Date:

10 Oct-16 17:14 (p 1 of 2)

Test Code: 16-1436a | 19-4574-4824

Mysidopsis 9	6-h Ad	cute Survi	val Test	:								N	ew Englar	nd Bioassay
Analysis ID: Analyzed:		669-0089 Oct-16 17:1		Endpoint: Analysis:	48h Sur Nonpara			vs T	Treatments		IS Version		1.9.2	
Batch ID:	05-96	65-5259		Test Type:	Survival	Survival (48h)				Ana	lyst:			
Start Date:	29 S	ep-16 12:0	8	Protocol:	EPA/821	EPA/821/R-02-012 (2002)				Diluent: Receiving Water				
Ending Date:	01 O	ct-16 11:31	l .	Species:	Mysidop	sis bah	iia			Brin	e:			
Duration:	47h			Source:	In-House	-House Culture				Age	: 4d			
Sample ID:	06-68	395-1136		Code:	27DF626	60				Clie	nt: Sp	ectrum Anal	ytical	
Sample Date:		•		Material:	Not Appl					Proj	ect:			
Receipt Date:		ep-16		Source:	Gulf Oil	Termin	al (MA0	0010	091)					
Sample Age:	36h			Station:										
Data Transfor	rm		Alt H	7-17-1						NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected)		C > T							100	> 100	n/a	1	4.57%
Steel Many-O	ne Ra	nk Sum Te	est											
Control	vs	Conc-%		Test S	Stat Crit	tical	Ties	DF	P-Type	P-Value	Decision	η(α:5%)		
Dilution Water		6.25		18	10		1	6	Asymp	0.8333	•	nificant Effec		
		12.5		18	10		1	6	Asymp	0.8333	-	nificant Effec		
		25		18	10		1	6	Asymp	0.8333	-	nificant Effec		
		50		18	10		1	6	Asymp	0.8333	_	nificant Effec		
		100		16	10		18	6	Asymp	0.6105	Non-Sigr	nificant Effec	ι	
ANOVA Table	!				•					5) ()				×
Source Between		Sum Squa 0.0055332		0.001	Square		DF 5		F Stat	P-Value 0.4457	Decision Non Sign	ı(α:5%) nificant Effec		
Error		0.0055332		0.001			5 18		A.	0.4457	Non-Sign	illicant Ellec	ı	
Total		0.0254527		0.001	1000		23							
Distributional	Tests													
Attribute		Test					Test S	itat	Critical	P-Value	Decision	n(a:1%)		
Variances			uality o	f Variance 1	est		9	-	4.248	2.0E-04		Variances		
Variances				lity of Varia			1		4.248	0.4457	Equal Va			
Distribution			-	ormality Tes			0.4634	1	0.884	2.5E-08	Non-Nor	mal Distribut	ion	
48h Survival I	Rate S	Summary												
Conc-%		Code	Count	t Mean	95%	6 LCL	95% L	ICL	Median	Min	Max	Std Err	CV%	%Effect
0		D	4	1.000	1.00	000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
6.25			4	1.000	1.00	000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12.5			4	1.0000	1.00	000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
25			4	1.000			1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
50			4	1.000			1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100			4	0.975	0.89	954	1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
Angular (Corr	ected													
Conc-%		Code	Count					ICL	Median	Min	Max	Std Err	CV%	%Effect
0		D	4	1.412	1.41		1.412		1.412	1.412	1.412	0	0.00%	0.00%
6.25			4	1.412	1.41		1.412		1.412	1.412	1.412	0	0.00%	0.00%
12.5			4	1.412	1.41		1.412		1.412	1.412	1.412	0	0.00%	0.00%
25			4	1.412	1.41		1.412		1.412	1.412	1.412	0	0.00%	0.00%
50 100			4	1,412 1.371	1.41 1.24		1.412 1.501		1,412	1,412	1.412 1.412	0 04074	0.00%	0.00%
100			4	1.371	1.22	+4	1.501		1.412	1.249	1.412	0.04074	5.94%	2.89%

Report Date:

10 Oct-16 17:14 (p 2 of 2) 16-1436a | 19-4574-4824

Test Code: 16-143

Mysidopsis 96-h Acute Survival Test

New England Bioassay

Analysis ID:10-0669-0089Endpoint:48h Survival RateCETIS Version:CETIS v1.9,2Analyzed:10 Oct-16 17:14Analysis:Nonparametric-Control vs TreatmentsOfficial Results:Yes

48h	Sur	vival	Rate	Detail
-----	-----	-------	------	--------

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	1.0000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000	1.0000
12.5		1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000
100		1.0000	0.9000	1.0000	1.0000

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.412	1.412	1.412	1.412
6.25		1.412	1,412	1.412	1.412
12.5		1.412	1.412	1.412	1.412
25		1.412	1.412	1.412	1.412
50		1.412	1.412	1.412	1.412
100		1.412	1.249	1.412	1.412

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	10/10	10/10	10/10	10/10	
6.25		10/10	10/10	10/10	10/10	
12.5		10/10	10/10	10/10	10/10	
25		10/10	10/10	10/10	10/10	
50		10/10	10/10	10/10	10/10	
100		10/10	9/10	10/10	10/10	

Graphics

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	16-1436b	Test Organism:	<i>M</i> e	Menidia beryllina			
Project #:	05.0045469.00	Organism Age:		11	days		
Facility Name:	Gulf Oil Terminal	Test Duration:	48	_(hours)			
Date Sampled:	9/28/16	Beginning Date:	9/29/16	_Time:	1236		
Date Received:	9/29/16	Dilution Water S	Source:	Chelsea	River		
Sample ID:	Outfall 003	Salinity:	25	F	opt		

Effluent Conc. %		umber o Survivin organisn	g	_	issolve Oxyger (mg/L)	_	Те	mperati (°C)	ure		pH (su)			Salinity (ppt)	'
Initials	0	СВ	cw	СВ	СВ	CW	СВ	СВ	cw	СВ	СВ	cw	СВ	СВ	cw
Para Maria	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	9	9	7.4	6.1	6.4	25.1	25.0	24.8	7.9	8.0	8.0	25	25	25
Control B	10	10	10		6.0	6.2		25.0	25.1		8.1	8.1		25	25
Control C	10	10	10		6.1	6.1		24.9	25.2		8.1	8.1		25	25
Control D	10	10	10		6.1	6.1		24.9	25.1		8.1	8.1		25	25
Diluent A	10	10	10	7.3	6.2	6.0	25.1	24.8	24.9	7.7	7.8	8.0	25	25	25
Diluent B	10	10	10		6.2	6.2		24.8	24.9		7.8	7.9		25	25
Diluent C	10	10	10		6.3	6.2		24.8	25.0		7.8	7.9		25	25
Diluent D	10	10	10		6.2	6.1		24.8	25.0		7.8	7.9		25	25
6.25 A	10	10	10	7.3	5.8	6.2	25.2	25.3	25.0	7.8	7.8	7.9	25	24	25
6.25 B	10	10	10		5.9	6.0		25.3	25.3		7.8	7.9		24	24
6.25 C	10	10	10		6.0	5.9		25.3	25.3		7.8	7.9		24	24
6.25 D	10	10	10		6.0	5.9		25.4	25.4		7.8	7.9		24	24
12.5 A	10	10	10	7.3	5.9	5.8	25.1	25.3	25.3	7.9	7.9	7.9	25	24	24
12.5 B	10	10	10		5.9	5.9		25.3	25.4		7.9	7.8		24	24
12.5 C	10	10	10		5.8	5.9		25.4	25.5		7.9	7.9		24	24
12.5 D	10	10	10		5.9	5.8		25.4	25.4		7.9	7.9		24	24
25 A	10	10	10	7.3	5.8	6.2	25.2	25.4	25.3	8.1	8.0	8.0	24	24	24
25 B	10	10	10		5.8	6.0		25.3	25.4		8.1	8.0		24	24
25 C	10	10	10		5.9	6.0		25.4	25.4		8.0	8.0		24	24
25 D	10	10	10		5.9	6.0		25.4	25.1		8.0	8.0		24	24

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	16-1436b	Test Organism:	Me	enidia berylli	ina
Project #:	05.0045469.00	Organism Age:	6	11	days
Facility Name:	Gulf Oil Terminal	Test Duration:	48	_(hours)	
Date Sampled:	9/28/16	Beginning Date:	9/29/16	Time: _	1236
Date Received:	9/29/16	Dilution Water S	ource:	Chelsea	River
Sample ID:	Outfall 003	Salinity:	25	p	pt

Effluent Conc. %	8	umber o Survivin rganisn	g		issolve Oxyger (mg/L)		Те	mperati (°C)	ure		pH (su)			Salinity (ppt)	1
Initials	0	СВ	cw	СВ	СВ	cw	СВ	СВ	CW	СВ	СВ	CW	СВ	СВ	CW
- IN Shirt	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
50 A	10	1.0	10	7.7	5.9	6.2	25.2	25.4	25.2	8.3	8.2	8.1	24	24	24
50 B	10	10	10		5.8	5.8		25.3	25.3		8.2	8.1		24	24
50 C	10	10	10		5.8	5.7		25.4	25.3		8.2	8.1		24	24
50 D	10	10	10		6.0	6.1		25.2	25.0		8.2	8.1		24	24
100 A	10	10	10	8.8	6.3	6.1	25.3	24.9	25.0	8.6	8.5	8.4	23	24	24
100 B	10	10	10		6.2	6.1		25.0	25.2		8.5	8.3		24	24
100 C	10	10	10		6.2	6.0		25.0	25.3		8.5	8.4		23	24
100 D	10	10	10		6.2	6.1		25.0	25.0		8.5	8.4		23	24
								D							
							-								

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%	100%	Graphical

06-6357-7749

Report Date:

Analyst:

10 Oct-16 17:16 (p 1 of 2)

Test Code: 16-1436b | 10-9163-6734 Inland Silverside 96-h Acute Survival Test **New England Bioassay**

Analysis ID: 19-4042-4689 Endpoint: 48h Survival Rate **CETIS Version:** CETISv1.9.2

Analyzed: 10 Oct-16 17:15 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Start Date: 29 Sep-16 12:36 EPA/821/R-02-012 (2002) Protocol: Diluent: Receiving Water

Ending Date: 01 Oct-16 11:39 Species: Menidia beryllina Brine: **Duration:** Source: In-House Culture Age: 11 d

Test Type: Survival (48h)

Sample ID: 18-0858-1383 6BCCC307 Spectrum Analytical Code: Client:

Sample Date: 28 Sep-16 Material: Not Applicable Project:

Receipt Date: 29 Sep-16 Gulf Oil Terminal (MA0001091) Source: Sample Age: 37h Station:

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Log(X)	Linear	1085261	200	Yes	Two-Point Interpolation

Point Estimates

Batch ID:

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
LC50	>100	n/a	n/a	<1	n/a	n/a

48h Survival F	Rate Summary	1			Calc	ulated Varia	ite(A/B)				
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	D	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
6.25		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
12.5		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
25		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
50		4	1.0000	1,0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
100		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40

48h Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	1.0000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000	1.0000
12.5		1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1,0000	1.0000
100		1.0000	1.0000	1.0000	1.0000

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	10/10	10/10	10/10
6.25		10/10	10/10	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		10/10	10/10	10/10	10/10
50		10/10	10/10	10/10	10/10
100		10/10	10/10	10/10	10/10

002-570-915-7 CETIS™ v1.9.2.4 Analyst:____ QA:____

Report Date: **Test Code:**

10 Oct-16 17:16 (p 2 of 2)

New England Bioassay

Inland Silverside 96-h Acute Survival Test

16-1436b | 10-9163-6734

Analysis ID: Analyzed:

19-4042-4689 10 Oct-16 17:15

Endpoint: 48h Survival Rate Analysis:

Linear Interpolation (ICPIN)

Official Results: Yes

CETISv1.9.2 **CETIS Version:**

Graphics

Analyst:_____ QA:___

Report Date:

Analyst:

10 Oct-16 17:15 (p 1 of 2)

Test Code: 16-1436b | 10-9163-6734 Inland Silverside 96-h Acute Survival Test **New England Bioassay**

Analysis ID: 15-2938-8961 **Endpoint:** 48h Survival Rate **CETIS Version:** CETISv1.9.2

Analyzed: 10 Oct-16 17:15 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

Survival (48h)

29 Sep-16 12:36 EPA/821/R-02-012 (2002) Start Date: Protocol: Diluent: Receiving Water

Ending Date: 01 Oct-16 11:39 Species: Menidia beryllina Brine: **Duration:** Source: In-House Culture Age: 11 d

18-0858-1383 Sample ID: 6BCCC307 Code: Client: Spectrum Analytical

Sample Date: 28 Sep-16 Material: Not Applicable Project: Receipt Date: 29 Sep-16 Gulf Oil Terminal (MA0001091) Source:

Test Type:

Sample Age: 37h Station:

06-6357-7749

Data Transform NOEL LOEL Alt Hyp TOEL TU C > T 100 > 100 Angular (Corrected) n/a 1

Steel Many-One Rank Sum Test

Control	vs	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Dilution Wate	r	6.25	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		12.5	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		25	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		50	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		100	18	10	1	6	Asymp	0.8333	Non-Significant Effect

ANOVA Table

Batch ID:

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0	0	5	65540	<1.0E-37	Significant Effect
Error	0	0	18			
Total	0		23			

48h Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
6.25		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12.5		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
25		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
6.25		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
12.5		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
25		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
50		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
100		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%

48h Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	1.0000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000	1,0000
12.5		1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000

002-570-915-7 CETIS™ v1.9.2.4 Analyst:__ QA:_

Report Date: Test Code:

10 Oct-16 17:16 (p 2 of 2) 16-1436b | 10-9163-6734

Inland Silverside 96-h Acute Survival Test

New England Bioassay

Analysis ID:	15-2938-8961	Endpoint:	48h Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	10 Oct-16 17:15	Analyeie:	Nonnarametric-Control vs Treatments	Official Results:	Vas

Angular (Corrected) Transformed Deta	etaii
--------------------------------------	-------

• ,	•				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.412	1.412	1.412	1.412
6.25		1.412	1.412	1.412	1.412
12.5		1.412	1.412	1.412	1.412
25		1.412	1.412	1.412	1.412
50		1.412	1.412	1.412	1.412
100		1.412	1,412	1.412	1.412

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	10/10	10/10	10/10
6.25		10/10	10/10	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		10/10	10/10	10/10	10/10
50		10/10	10/10	10/10	10/10
100		10/10	10/10	10/10	10/10

Graphics

INITIAL CHEMISTRY INFORMATION

 CLIENT:
 Gulf Oil Terminal - 003

 PROJECT #
 05.0045469.00

RECIEPT DATE	9/2	29/16
SAMPLE	Effluent	Receiving Water
COC#	C36-3439	C36-3440
Temperature (°C)	4.8	4.0
Dissolved Oxygen (mg/L)	9.9	8.7
pH (standard units)	9.3	7.6
Conductivity (µmhos/cm)	421	48,600
Salinity (ppt)	< 1	32
Hardness (as mg/L CaCO3)	66	5700
Alkalinity (as mg/L CaCO3)	50	100
TRC - DPD (mg/L)	0.019	0.003
INITIALS	CW	CW

Additional notes:		
		_

SUBCONTRACT ORDER

Spectrum Analytical

SC26445

SENDING LABORATORY:

Eurofins Spectrum Analytical, Inc.

11 Almgren Drive Agawam, MA 01001 Phone: (413) 789-9018 Fax: (413) 789-4076

Project Manager: Dulce Litchfield

Project: Gulf Terminal - Chelsea, MA

RECEIVING LABORATORY:

GZA Geoenvironmental, Inc.- Manchester, CT*

77 Batson Drive Manchester, CT 06042 Phone: (860) 286-8900

Fax: (860) 242-8389

BILL TO:

Eurofins Spectrum Analytical, Inc.

2425 New Holland Pike Lancaster, PA 17601

Attention: Accounts Payable accountspayable@eurofinsus.com

PO Number: SC26445

Project #:

Gulf Chelsea

PO Number:

SC26445

Laboratory ID	Sample ID	Sampled	Matrix	Analysis	Due	Comments
	SC26445-01	28-Sep-16.11:30	Surface Water	Aquatic Tox	12-Oct-16 16:00	Client ID is Outfall
Containers Supplied:	, G	ulf Oil	Effluer	1+		003/LC50
Other (L)	Stop \$	Shoo Eff	#2 C	36-		C30-3439

Please send notice within 24 hours of obtaining valid data, of the results of all drinking water samples that exceed any EPA or Department-established maximum contaminant level, maximum residual disinfectant level or reportable concentration. Notice should be emailed to SpectrumLabResults@EurofinsUS.com.

Please notify SpectrumLabResults@EurofinsUS.com immediately and prior to conducting analysis if certification is not held for the analyses requested.

Please e-mail results in electronic format to SpectrumLabResults@EurofinsUS.com.

9-29.14 Temp °C

Released By

Date

Received By

Date

SUBCONTRACT ORDER

Spectrum Analytical

SC26446

SENDING LABORATORY:

Eurofins Spectrum Analytical, Inc.

11 Almgren Drive Agawam, MA 01001 Phone: (413) 789-9018 Fax: (413) 789-4076

Project Manager: Dulce Litchfield

Project: Gulf Terminal - Chelsea, MA

RECEIVING LABORATORY:

GZA Geoenvironmental, Inc. - Manchester, CT*

77 Batson Drive Manchester, CT 06042 Phone: (860) 286-8900

Fax: (860) 242-8389

Project #: Gulf Chelsea

PO Number: SC26446

BILL TO:

Eurofins Spectrum Analytical, Inc.

2425 New Holland Pike Lancaster, PA 17601

Attention: Accounts Payable accountspayable@eurofinsus.com

PO Number: SC26446

Laboratory ID	Sample ID	Sampled	Matrix	Analysis	Due	Comments
	SC26446-01	28-Sep-16 11:30	Surface Water	Aquatic Tox	12-Oct-16 16:00	Client ID is Chelsea Creek/LC50
Containers Supplied: Other (J)	Gulf	Oil	Diwent		C36-31	44 D

Please send notice within 24 hours of obtaining valid data, of the results of all drinking water samples that exceed any EPA or Department-established maximum contaminant level, maximum residual disinfectant level or reportable concentration. Notice should be emailed to SpectrumLabResults@EurofinsUS.com.

Please notify <u>SpectrumLabResults@EurofinsUS.com</u> immediately and prior to conducting analysis if certification is not held for the analyses requested.

Please e-mail results in electronic format to SpectrumLabResults@EurofinsUS.com.

Released By Date Received By 9/29/160840

Date Temp °C

Released By

Date

Received By

Date

New England Bioassay Reference Toxicant Data: *Mysidopsis bahia* 48-hour LC50

Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: Oct 2014 - Sept 2016

								CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th & 90th%
14-1573	10/1/2014	17.7	19.5	2.8	13.9	25.1	0.14	0.26
14-1819	11/3/2014	13.8	19,3	3.0	13.4	25.2	0.15	0.26
14-1962	12/1/2014	17.7	19.1	3.0	13.1	25.0	0.16	0.26
15-109	1/20/2015	17.1	19.1	3.0	13.2	25.1	0.15	0.26
15-140	2/2/2015	21.0	19.3	2.9	13.5	25.1	0.15	0.26
15-258	3/2/2015	17.7	19.3	2.9	13.5	25.1	0.15	0.26
15-414	4/1/2015	17.1	19.1	2.9	13.2	24.9	0.15	0.26
15-549	5/1/2015	15.9	18.7	3.0	12.8	24.7	0.16	0.26
15-704	6/1/2015	18.3	18.6	2.9	12.9	24.3	0.15	0.26
15-900	7/2/2015	18.3	18.3	2.8	12.7	23.9	0.15	0.26
15-1082	8/3/2015	17.7	18.3	2.4	13.5	23.1	0.13	0.26
15-1296	9/1/2015	17.7	18.2	2.4	13.4	23.0	0.13	0.26
15-1458	10/1/2015	17.1	18.2	2.4	13.5	23.0	0.13	0.26
15-1687	11/2/2015	22.5	18.1	2.5	13.1	23.2	0.14	0.26
15-1776	12/1/2015	21.8	18.4	2.3	13.8	23.0	0.13	0.26
16-34	1/4/2016	18.4	18.3	2.3	13.7	22.9	0.12	0.26
16-142	2/1/2016	17.1	18.3	2.3	13.7	22.8	0.12	0.26
16-338	3/8/2016	16.1	18.2	2.3	13.6	22.9	0.13	0.26
16-460	4/1/2016	16.9	17.9	2.3	13.2	22.5	0.13	0.26
16-600	5/2/2016	15.4	17.8	2.0	13.7	21.8	0.11	0.26
16-709	6/1/2016	19.6	17.9	2.0	13.8	22.0	0.11	0.26
16-849	7/1/2016	21.7	18.3	2.2	13.8	22.7	0,12	0.26
16-1058	8/1/2016	16.3	18.2	2.0	14.1	22.2	0.11	0.26
16-1256	9/7/2016	17.6	18.2	2.0	14.1	22.3	0.11	0.26

New England Bioassay Reference Toxicant Data: *Menidia beryllina* 48-hour LC50

Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: Aug 2014 - Sept 2016

	Δ	LC50	Mean LC50	+/- 2 STD
--	---	------	-----------	-----------

								CV National	CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th%	90th%
14-1203	8/5/2014	8.1	8.3	0.4	7.6	9,1	0.05	0.21	0.44
14-1395	9/4/2014	8.7	8,3	0.4	7.5	9.1	0.05	0.21	0.44
14-1574	10/1/2014	8.4	8.3	0.4	7.6	9.1	0.04	0.21	0.44
14-1983	12/5/2014	8.4	8.3	0.4	7.6	9.1	0.04	0.21	0.44
15-142	2/6/2015	8.1	8.4	0.4	7.6	9.1	0.04	0.21	0.44
15-143	3/2/2015	8.0	8.4	0.4	7.6	9.1	0.04	0.21	0.44
15-585	4/15/2015	8.1	8.4	0.3	7.7	9.1	0.04	0.21	0.44
15-623	5/6/2015	8.1	8.4	0.3	7.8	9,0	0.04	0,21	0.44
15-705	6/3/2015	8.7	8.4	0.3	7.8	9.0	0.04	0.21	0.44
15-901	7/2/2015	8.1	8.4	0.3	7.8	9.0	0.04	0.21	0.44
15-1083	8/6/2015	8.7	8.4	0.3	7.8	9.0	0.04	0.21	0.44
15-1297	9/2/2015	8.4	8.4	0.3	7.8	9.0	0.03	0.21	0.44
15-1539	10/1/2015	7.8	8.4	0.3	7.7	9.0	0.04	0,21	0.44
15-1688	11/3/2015	8.1	8.3	0.3	7.7	9.0	0.04	0.21	0.44
15-1825	12/3/2015	8.1	8.3	0.3	7.7	8.9	0.04	0,21	0.44
16-108	1/20/2016	7.8	8.3	0.3	7.6	8.9	0.04	0.21	0.44
16-260	2/23/2016	7.5	8.3	0.4	7.6	9.0	0.04	0.21	0.44
16-303	3/1/2016	7.8	8.3	0.4	7.5	9.0	0.04	0,21	. 0.44
16-461	4/1/2016	8.7	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-602	5/5/2016	8.3	8.3	0.4	7.5	9.0	0.04	0,21	0.44
16-798	6/15/2016	8.7	8.2	0.4	7.5	9.0	0.04	0.21	0.44
16-850	7/1/2016	7.8	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1060	8/3/2016	8.7	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1282	9/8/2016	8.7	8.2	0.4	7.5	8.9	0.04	0,21	0.44

NEB SALTWATER SPEC S ACCLIMATION RECORD.

Species:	Client:	Quantity:	*Mortality upon arrival
Menidia berylline	Test ID:	2911	ē
	Lot#: Ss(6 AI (9-27)	Age:	72
Aguetic Indicators	`	9 days on 9.27-16	* Mortality > 10% - Notify management

Allowable Mortality: > 5% mortality = Notify management.

Fish = No more than 50% tank volume water change over a 12 (twelve) hour period. Allowable Acclimation:

Mysids = Need to be +/- 2 ppt of test dilution water.

	Comments / Treatment type		Accumented to ASVV.	420 D J ASU	HZO D WI 101 ASW			
	Mortalities	# of dead organisms removed from tank		0)			
Observations	Do organisms look stressed?	Yes / No		2	Ž			
Obser	Behavioral observations	A = Normal, B = Erratic mov C = Dead	4	<u></u>	T			
	Feedings	AM NOON PM	ALS SY SY	SV SV SV	200			
	Sal. (ppt) **		25	26	26			
	Alkal. (mg/L) ml titrant		\$ E		Ì			
, Li	Temp. (C) *	-	D. O	22.5	22,6			
Water Chemistry	p.H. (SU)		7.4		1			
Water	D.O. (mg/L)		5.0	7.5	5			
	Date		91-1-2-3	9-38-16	91-56-16			

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

HANIBAL TECHNOLOGY	Featuring	SPECTRUM ANALYTICAL, INC.		
NOLOGY	0rd	TICAL, INC.	Ź	

CHAIN OF CUSTODY RECORD

281 Eastern Ave	Report To: Andrew Adams	HANIBAL TECHNOLOGY	SPECTRUM ANALYTICAL, INC. Featuring	
80 William St, Suite 400 Wellesley, MA 02481-3705	Invoice to: Critistophier Sill: Gulf Oil LP		Page1 of2	Charles of the state of the sta
Location:	Site Name:	Project No:		
281 Eastern Ave, Chelsea State: MA	Gulf Chelsea Terminal	Gulf Chelsea	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	

	7=CH3OH 8=Na	F=Field Filtered	Project Mgr:	Telephone #:
	7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid	Andrew Adams	617.884.5980
G. L. Lines	[]= none 12=	5=NaOH 6=Ascorbic Acid		Diote/RON:
Anglysis	3 11 3 2 2 11 11 10	List Preservative Code below:		Sampler(s):
MA DEP MCP CAM Report? Tes	additional citalges may apply y	QA/QC Reporting Notes:		V

,			La						0=0il	DW=I		7=CH.	F=Fiel		Project Mgr:	Telephone #:
•	. S.	1	Lab ID:				X1=		O=Oil SO=Soil	DW=Dinking Water		30H 8 =Na	d Filtered	(Mgr	nne #:
Outfall 003	Cation	Outfall 003	Sample ID:		G= Grab		The state of the s		SL=Sludge			7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	F=Field Filtered $1=Na_2S2O_3$ $2=HCl$ $3=H_2SO_4$		Andre	617.0
		003	D:				X2=		A=Indoor/Ambient Air	GW=Groundwater S'v=Surface water	CIVI O C	Vater 10=H ₃ PO ₄	Cl 3=H ₂ SO ₄		Andrew Adams	017.004.3900
こと と	000	20,28	пате:	,	C=Compsite					water	Water		4=HNO3			
		11:36	Time	Time	psite		7.5	V1=	SG=Soil Gas	AA AA AA SA SISIC AAS	WW=Waste Water	II= none	=NaOH	- 1	P.O No.:	
G	+	G		Ty	pe					ici	ter	-11	0-ASCOLUTE ACIO	1	0.3	
WC	+	SW		_	atrix	۷	1						ו מוכ אכוי	1		
			#	of	VO	A١	/ia	ls					-	2.		i
			#	of	Am	ber	G	las	S		Cor				Suoto	Onote/RON
			+	_	Cle	_	_	ass			Containers				1	ON.
	_	_	#	of	Plas	stic										
	-	×	A	m	mon	ia						w				
:	×		+	rs:						•		1	_			
			()&	.G							ω	List Preservative Code below:	,		
				ЗТ ГВ		naj	oht	ha	-lene.		Analysis	2	servani			
					yl cl nano		rid	e, l	МТВ	E+	lysis	2	re Con)		
]	PA	Hs a	nd	to	tal	phen	ol*		<u></u>	BEJOW			
			-	Fee	cal C	oli	for	m				1				
				TC		;e	ch	lar	inate	અ		10				
	-					**	Lax			S	MA					
	Required Minimum Levels:	Report bilenoi down to more	Board aboard down to MDI	State-specific reporting standards:		☐ Tier II* ☐ Tier IV*	☐ NJ Reduced* · ☐ NJ Full*	☐ ASP A* ☐ ASP B*	»A	[7] Standard [7] No OC	MA DEP MCP CAM Report?	Countries of the Country of the Coun	* additional charges may apply	O LOC Demosting Notes:		

☐ DI VOA Frozen ☐ Soil Jar Frozen	Refrigorated	□ Re	Iced	RAmbient Iced	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V-	6, ED#											7		1	1
☐ Present ☐ Intact ☐ Broken	Custody Seals:	Custos	ceipt	Condition upon receipt	ndition	Ω	O Indian									1	1	1	10	1	
							1	0	(S3	O	18C	· Q.	S	A	,	1		2	J.		
aadams@gulfoil.com, cgill@gufoil.com	oil.com, cgil	ıs@gulfi	aadan	E-mail to:				6	5,0		BS	2	· · · · · · · · · · · · · · · · · · ·	rat !	In the	\					
				EDD format:		1	Temp °C		Time:		Date:			Received by:	Hec		*	Relinquished by:	Reli		
													+								
										+			-		67-69		Outlan oos		6,	(
Group 2 PAHs - 5 µg/L	×					,			1		2	WS	_	->	376		Cultall out				
Group 1 PAHs - 0.1 μg/L		×							_	+		WS			200		Contain ood				
ethanol - 400 μg/L			×							_		WS	:20 6		0.72		Outfall 003				
naphthalene and vinyl chl - 5 µg/L				×	×					+	ω	WS	9 00 i	_	2-12		Outfall 003				
втех - 2 µg/L; ТВА - 10 µg/L;						×				_		SW	6	+	200		Outfall on3				
Required Minimum Levels:							×					SW	<u>о</u>	11:30	× 60		Outfall 003			B	K
* Report phenol down to MUL							×					WS	6	W:36	9.78		Outfall 003				7
State-specific reporting standards:		Fe	PA	Vi	BI	-	TS		# o	_		М		Time:	Date:		Sample ID:		Lab ID:		
Other	DC heck	cal Co	Hs ar			&G	imoni S		f Plas			atrix	ype	psite	C=Compsite			G= Grab			
NJ Reduced*	if chlo	liforn	nd tota	loride,	aphth		a		tic	er Gla r Glas	Vials	,		X3=			X2=		=1X		
DQA*	rinate	1	l phen	МТВ	a-lene.									SG=Soil Gas		A=Indoor/Ambient Air		SL=Sludge	il SO=Soil	0=0il	
	ed		ol*	E +	Anz				ners	Containers			Water	ww=Waste Water	e Water	SW=Surface Water	GW=Groundwater		DW=Dinking Water	DW	<u>-</u> -
The latest	10	11	1	2	2	з	3 11							II- IIOIIG		10=H ₃ PO ₄	7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	1SO ₄ 9=D	13OH 8 =Nal	7=C	
* additional charges may appply			e below	ve Cod	eservati	List Preservative Code below:						DIC ACIO	6=Ascorbic Acid	=N2	4=HNO ₃	3=H ₂ SO ₄	3 2=HCl	1=Na ₂ S2O ₃	F=Field Filtered	F=F	- 1
A STATE OF THE STA				,		-						٨٨					Andrew Addition		Project Mgr:	Proje	

El Sundard TAT - 7 to 10 business days Rush TAT - Date Needed:

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Telephone #:

Chelsea, MA 02150 281 Eastern Ave Gulf Oil LP

617.884.5980

Report To: Andrew Adams

CHAIN

	26445
Specia	3
Special Handlin	

OF CHISTORY BECORD	Special Handling Special Handling Special Handling A Symbol TAT - Pole Needed
HAIN OF CUSTODY RECORD	Rush TAT - Date Needed: 10/12/16
Page of 2	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.
Invoice To: Christopher Gill Project No	Gulf Chelsea
Gulf Oil LP	Gulf Chelsea Terminal
80 William St, Suite 400	
Wellesley, MA 02481-3705	281 Eastern Ave, Chelsea State: MA
Sampler(s):	ANGLES MOEINS

Recell 1-Nay52O ₁ 2-HCI 3-H ₂ O ₂ 4-HNO ₂ 4-HNO ₃ 5-NaOH 6-Assorbic Acid 12- 11 11 11 11 11 11 12 13 14 15 15 15 15 15 15 15	t Custody Seals: Present Refrigerated Dl VOA Frozen	Condition upon receipt	2 0				C		1		
11			Carried	1530	1/8C)h	7	S. C.	,	1		Mund
Time: Three Water Waste Water It Air SG-Soil Gas It Are Soil Gas Type CC-Compsite Type Time: Time: Tremp oc Cheek if chlorinated Containers List Preservative Code below: It 11 11 11 11 11 It 11 11 11 It It It It It It It It	dams@gulfoil.com, cgill@gulfoi	E-mail to:	Charried	13:06	1/182/1	10	()	hu	\	72	120
11 11 12 13 14 15 15 15 15 15 15 15			Temp °C	Time:	Date:		ed by:	Rocciv		ished by:	Relingu
# of Clear Glass # of Clear Glass # of Clear Glass # of Plastic Trime: # of Plastic Analysis List Preservative Code below: # of Amber Glass # of Clear Glass # of Clear Glass # of Plastic List Preservative Code below: Containers								2.80			
# of VOA Vials # of Clear Glass # of Clear Glass # of Plastic Trotal Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* * * * * * * * * * * * * * * * * * *											
# of Clear Glass # of Clear Glass # of Clear Glass # of Plastic Trime: Track Salinity, pH, TS Total Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* LSS Preservative Code below: **TRC, salinity, pH, TS **X Total Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* **X To			•								
4-HNO, 5-NaOH 6-Ascorbic Acid 11= none 12= 11Air SG=Soil Gas X3= C=Compsile Time: Type Waste Water W=Waste Water C=Compsile Type Waste Water W=Waste Water Type Waste Water W=Waste Water Type Water W=Waste Water Analysis Analysis Analysis Analysis C=Check if chlorinated C=Check if chlorinated											
# of Clear Glass # of Clear Glass # of Plastic 11											
A=HNO, S=NaOH 6=Ascorbic Acid II= none 12= C=Compsite C=Compsite Time: Type W=Waste Water W=Waste Water C=Compsite C=Compsite C=Compsite C=Compsite C=Compsite C=Compsite Containers Containers Analysis List Preservative Code below: Analysis Analysis Analysis Containers Analysis Containers Containers Analysis Containers Containers Containers Analysis Containers Containers Containers Containers Analysis Containers											
4=HNO ₃ 5=NaOH 6=Ascorbic Acid 11= none 12= 11 Air SG=Soil Gas 12= C=Compsile C=Compsile C=Compsile C=Compsile C=Compsile Time: Tofal Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* X Total Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* X Total Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* X Total Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* X Containers Analysis Analysis C Check if chlorinated											3
A=HNO ₃ S=NaOH 6=Ascorbic Acid II= none 12= It Air SG=Soil Gas II= none 12= Ce=Compsile Containers Containers Containers List Preservative Code below: Analysis Analysis Trine: T	□ Required Minimum Levels:	×				-	11:30	2-1-10	003	Outfall (
4-HNO, 5-NaOH 6-Ascorbic Acid 11= none 12= 11 Air SG-Soil Gas 11			×	_	,		11:35	9.79	003	Outfall (-
A=HNO ₃ S=NaOH 6=Ascorbic Acid II= none 12= It Air SG=Soil Gas # of VOA Vials # of Amber Glass # of Clear Glass # of Plastic TRC, salinity, pH, TS Total Recov. (Cd, Cr, Cu, Pb, Ni, Zn)* LC50 ** Check if chlorinated Check if chlorinated			×	_			26:11	9.28)03	Outfall (えらなか
4=HNO ₃ S=NaOH 6=Ascorbic Acid List Preservative Code below: 11= none 12= Containers Containers List Preservative Code below: 11 11 11 11 11 11 11 11 11 11 11 11 11		LC50 **	Total Reco		# of Amber			C=Compsi	ID:		
4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: 11= none 12= 11 12 <t< td=""><td></td><td></td><td>v. (Cd, Cr,</td><td></td><td>Glass</td><td></td><td>oil Gas</td><td>SG</td><td>Indo X2=</td><td>1</td><td>0=0il S0=Soil</td></t<>			v. (Cd, Cr,		Glass		oil Gas	SG	Indo X2=	1	0=0il S0 =Soil
4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: 11= none 12= 11 11 11 11	MAI	Analysis		tainers	Con		W=Waste Water			GW=Groundwat	DW=Dinking Water
1=N- COO 7=HCI 3=H.SO. 4=HNO. 5=NaOH 6=Ascorbic Acid		T F F COULC BY	1			12=	none	11	Vater 10=H ₃ PO	D_4 9=Deionized V	7=CH3OH 8=NaHS0
						ecorhic Ac		OINH	2-11 60		1.

St 26448 J

12	CHAIN OF CUSTODY RECORD	Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: 10/12/15
SPECTRUM ANALYTICAL, INC. HANIBAL Featuring HANIBAL FECHNOLOGY	Page1 of1	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.
Report To: Andrew Adams	Invoice To: Christopher Gill Project No:	Vo: Gulf Chelsea
Gulf Oil LP	Gulf Oil LP	Gulf Chelsea Terminal
281 Eastern Ave	80 William St, Suite 400	
Chelsea, MA 02150	Wellesley, MA 02481-3705 Location	281 Eastern Ave,
Telephone #: 617.884.5980	Sampler(s):	(s): AROYAW ABGINE
Project Mgr: Andrew Adams	P.O No.: Quote/RQN:	
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid	4-HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below:	e Code below: QA/QC Reporting Notes:
TOTAL O-Nation O-Datamized Water 10=H. PO.		_